INFLUENZA A/H10 VIRUSES OF WILD BIRDS, MAMMALS AND HUMANS

Main Article Content

Authors

K.Kh. Zhumatov

Scientific Production Center Microbiology and Virology, 10,  Bogenbay batyr str., Almaty,050010, Kazakhstan

A.I. Kydyrmanov

Scientific Production Center Microbiology and Virology, 10,  Bogenbay batyr str., Almaty,050010, Kazakhstan

Abstract

Emerging infectious diseases pose a serious threat to wildlife, domestic animals, and public health. Of the more than 335 human infectious diseases that have emerged over the past six decades, influenza is one of the most common infection, causing up to 650,000 deaths per year. In addition to the annual seasonal influenza A, the emergence of its new, pandemic, and highly pathogenic variant is even more dangerous. This review describes the classification of influenza pathogens, their structural features, and sources of isolation. The latest published data on the structure, ecology, phylogenesis and pathogenicity of influenza A subtype H10 viruses from various host species are summarized. It is noted that the avifauna is not the only possible reservoir for H10 influenza viruses; avian H10N8 infected dogs in China and mink in Scandinavia, and H10N7 caused widespread mortality of seals in the Baltic Sea in 2014. The first three human cases of avian influenza A H10N8 were reported in 2013-2014 in China, one of which lead to mortality. Information is provided on the genetic variability and evolution of influenza A subtype H10 strains circulating in avifaunal, mammalian, and human populations. Influenza A subtype H10 virus is actively evolving by exchange of genetic information. The potential epidemiological hazard of influenza A virus (H10N8) is as a causative agent of a pandemic, and the need to control its circulation in populations of birds, mammals and among the people is emphasized.

Keywords

influenza virus A, subtype H10, avian, genome, variability, phylogenesis

Article Details

References

Jones K.E., Patel N.G., Levy M.A., Storeygard A., Balk D., Gittleman J.L., Daszak P. Global trends in emerging infectious diseases. Nature, 2008, vol. 451, pp. 990–993.

Всемирная организация здравоохранение [Электронный ресурс]. – Режим доступа: URL, свободный.

Webster R., Govorkova E. Continuing challenges in influenza. Ann. N.Y. Acad. Sci., 2014, vol. 1323, pp. 115–139.

Wu Y., Tefsen B., Shi Y., Gao G. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol., 2014, vol. 22, pp. 183–191.

Ma W., García-Sastre A., Schwemmle M. Expected and unexpected features of the newly discovered bat influenza A-like viruses. PLoS Pathog., 2015, vol. 11(6), e1004819. - Doi:10.1371/journal.ppat.1004819.

Russell R.J., Kerry P.S., Stevens D.J., Steinhauer D.A., Martin S.R., Gamblin S.J., Skehel J.J. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proc Natl Acad. Sci. Nov., 2008, vol. 105(46), pp. 17736-41.

Olsen B., Munster V.J., Wallensten A., Waldenström J., Osterhaus A.D., Fouchier R.A. Global patterns of influenza A virus in wild birds. Science, 2006, vol. 312, pp. 384–388.

Fouchier R.A., Munster V., Wallensten A., Bestebroer T.M., Herfst S., Smith D., Rimmelzwaan G.F., Olsen B., Osterhaus A.D., Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol., 2005, vol. 79, pp. 2814–2822.

Diseases of Poultry / D.E. Swayne, D.A. Halvorson, Y.M. Saif, H.J. Barnes, J.R. Glisson, A.M. Fadly, L.R. McDougald, D.E. Swayne. Io.: Diseases of poultry, 2003, 1409 р.

NCBI Influenza virus resource. Available at [Электронный ресурс]. Режим доступа: URL. nlm.nih.gov/genomes/FLU/Database/nph-select.cgi go Zdatabase, свободный.

Manzoor R., Sakoda Y., Mweene A., Tsuda Y., Kishida N., Bai G.R., Kameyama K., Isoda N., Soda K., Naito M., Kida H. Phylogenic analysis of the M genes of influenza viruses isolated from free-flying water birds from their Northern Territory to Hokkaido. Virus Genes, 2008, vol. 37(2), pp. 144-52.

Sayatov M.H. Ekologiya i immunologiya VGA(N1N1), cirkuliruyushchih sredi dikih ptic i naseleniya Kazahskoj SSR. Avtoref. diss. dokt. biol. nauk., 1986, pp. 45. (In Russian).

Zhang H., Xu B., Chen Q., Chen J., Chen Z. Characterization of an H10N8 influenza virus isolated from Dongting lake wetland. Virol J., 2011, vol. 8, pp. 42.

Jiao P., Cao L., Yuan R., Wei L., Song Y., Shen D., Gong L., Luo K., Ren T., Liao M. Complete genome sequence of an H10N8 avian influenza virus isolated from a live bird market in Southern China. J Virol., 2012, vol. 86(14), pp. 7716.

Liu S., Ji K., Chen J., Tai D., Jiang W., Hou G., Li J., Huang B. Panorama phylogenetic diversity and distribution of type A influenza virus. PLoS ONE, 2009, vol. 4. - Doi: 10.1371/journal.pone.0005022.

Wu H., Yang F., Liu F., Xiuming Peng., Bin Chen., Linfang Cheng., Xiangyun Lu., Hangping Yao., Nanping Wu. Molecular characterization of H10 subtype avian influenza viruses isolated from poultry in Eastern China. Arch Virol., 2019, vol. 164, pp. 159.

Su S., Qi W., Zhou P., Xiao C., Yan Z., Cui J., Ji K., Zhang G., Gray G.C., Liao M., Li S. First evidence of H10N8 avian influenza virus infections among feral dogs in live poultry markets in Guangdong province. Clin. Infect., 2014, vol. 59, pp. 748–750.

Klingeborn B., Englund L., Rott R., Juntti N., Rockborn G. An avian influenza A virus killing a mammalian species - the mink, Brief report. Arch Virol., 1985, vol. 86(3-4), pp. 347-51.

Englund L. Studies on influenza viruses H10N4 and H10N7 of avian origin in mink. Vet Microbiol., 2000, vol. 74(1-2), pp. 101-7.

Zohari S., Metreveli G., Kiss I., Belak S., Berg M. Full genome comparison and characterization of avian H10 viruses with different pathogenicity in mink (Mustela vison) reveals genetic and functional differences in the non-structural gene. Virol J., 2010, vol. 7, pp. 145.

Shelton H., Ayora-Talavera G., Ren J., Loureiro S., Pickles R.J., Barclay W.S., Jones I.M. Receptor binding profiles of avian influenza virus hemagglutinin subtypes on human cells as a predictor of pandemic potential. J Virol., 2011, vol. 85(4), pp. 1875-80.

Zohari S., Neimanis A., Harkonen T., Moraeus C., Valarcher J.F., Avian influenza A (H10N7) virus involvement in mass mortality of harbour seals (Phoca vitulina) in Sweden. Eurosurveillance, 2014, vol. 19(46), pp. 2-7.

Bodewes R., Zohari S., Krog J.S., Hall M.D., Harder T.C., Bestebroer T.M., van de Bildt MWG., Spronken M.I., Larsen L.E., Siebert U., Wohlsein P., Puff C., Seehusen F., Baumgärtner W., Härkönen T., Smits S.L., Herfst S., Osterhaus ADME., Fouchier RAM., Koopmans M.P., Kuiken T. Spatiotemporal Analysis of the Genetic Diversity of Seal Influenza A(H10N7) Virus, Northwestern Europe. J Virology, 2016, vol. 90, pp. 9.

Parry J. H10N8 avian flu virus claims its first known human casualty. 6th world conference on research integrity, Hong Kong, 2014, vol. 348, pp. 1360.

To K.K., Tsang A.K., Chan J.F., Cheng V.C., Chen H., Chen H., Yuen K.Y., Emergence in China of human disease due to avian influenza A(H10N8) – cause for concern. J Infect., 2014, vol. 68 (3, pp. 205-15.

World Health Organization. Avian influenza A (H10N8). [Электронный ресурс]. – Режим доступа:wpro.who.int. w.wpro.who.int/china/mediacentre/factsheets/h10n8/en, свободный.

Qi W., Su S., Xiao C., Zhou P., Li H., Ke C., Gray G.C., Zhang G., Liao M. Antibodies against H10N8 avian influenza virus among animal workers in Guangdong Province before November 30, 2014, when the first human H10N8 case was recognized. BMC Med., 2013, vol. 12, pp. 205.

Arzey G.G., Kirkland P.D., Arzey K.E., Frost M., Maywood P., Conaty S., Hurt A.C., Deng Y.M., Iannello P., Barr I., Dwyer D.E., Ratnamohan M., McPhie K., Selleck P. Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg Infect Dis., 2012, vol. 18(5), pp. 814-6.

Pan American Health Organization. Avian influenza virus A (H10N7) circulating among humans in Egypt // Available at: URL 2004.htm.

Zhang T., Bi Y., Tian H., Li X., Liu D., Wu Y., Jin T., Wang Y., Chen Q., Chen Z., Chang J., Gao G.F., Xu B. Human infection with influenza virus A(H10N8) from live poultry markets. Emerg Infect Dis., 2014, vol. 20, pp. 2076–2079.

Squires R.B., Noronha J.V., Garcia-Sastre A., Macken C., Baumgarth N., Suarez D.L., Pickett B.E., Zhang Y., Larsen C.N., Ramsey A., Zhou L., Zaremba S., Kumar S., Deitrich J., Klem E., Scheuermann R.H. Influenza research database: An integrated bioinformatics resource for influenza virus research. Influenza Other Respir. Viruses, 2012, vol. 6, pp. 404–416.

Wan H., Perez D.R. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and teplication in human airway epithelial cells. J. Virol., 2007, vol. 81, pp. 5181–5191.

de Wit E., Munster V.J., van Riel D., Beyer W.E., Rimmelzwaan G.F., Kuiken T., Osterhaus A.D., Fouchier R.A. Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J. Virol., 2010, vol. 84(3), pp. 1597-606.

Fan S., Deng G., Song J., Tian G., Suo Y., Jiang Y., Guan Y., Bu Z., Kawaoka Y., Chen H. Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mic. Virology, 2009, vol. 384(1), pp. 28-32.

Jiao P., Tian G., Li Y., Deng G., Jiang Y., Liu C., Liu W., Bu Z., Kawaoka Y., Chen H. A single amino - acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mic. J Virol., 2008, vol. 82(3), pp. 1146-54.

Steel J., Lowen A.C., Mubareka S., Palese P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog., vol. 5(1).

To K.K., Chan J.F., Chen H., Li L., Yuen K.Y. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities. Lancet Infect Dis., 2013, vol. 13, pp.

Jonges M., Welkers M.R., Jeeninga R.E., Meijer A., Schneeberger P., Fouchier R.A., Jong M., Koopmans M. Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian influenza virus A(H7N7) infection determined by illumina ultra-deep sequencing. J. Virol., 2013, vol. 88(3), pp. 1694-702.

Croville G., Soubies S.M., Barbieri J., Klopp C., Mariette J., Bouchez O., Camus-Bouclainville C., Guérin J.L Field monitoring of avian influenza viruses: whole-genome sequencing and tracking of neuraminidase evolution using 454 pyrosequencing. J Clin Microbiol., 2012, vol. 50(9), pp. 2881-7.

Matrosovich M., Zhou N., Kawaoka Y., Webster R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol., 1999, vol. 73(2), pp. 1146-55.

Gao R., Cao B., Hu Y., Feng Z., Wang D., Hu W., Chen J., Jie Z., Qiu H., Xu K., Xu X., Lu H., Zhu W., Gao Z., Xiang N., Shen Y., He Z., Gu Y., Zhang Z., Yang Y., Zhao X., Zhou L., Li X., Zou S., Zhang Y., Li X., Yang L., Guo J., Dong J., Li Q., Dong L., Zhu Y., Bai T., Wang S., Hao P., Yang W., Zhang Y., Han J., Yu H., Li D., Gao G.F., Wu G., Wang Y., Yuan Z., Shu Y. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med., 2013, vol. 16, pp. 1888-97.

Kim H.R., Lee Y.J., Oem J.K., Bae Y.C., Kang M.S., Kang H.M., Choi J.G., Park C.K., Kwon Y.K. (2012) Characterization of H10 subtype avian influenza viruses isolated from wild birds in South Korea. Vet Microbiol., 2012, vol. 161(1-2), pp. 222-8.

Wood G.W., Banks J., Strong I., Parsons G., Alexander D.J. An avian influenza virus of H10 subtype that is highly pathogenic for chickens, but lacks multiple basic amino acids at the haemagglutinin cleavage site. Avian Pathol., 1996, vol. 25(4). pp. 799-806.

Wood G.W., McCauley J.W., Bashiruddin J.B., Alexander D.J. Deduced amino acid sequences at the haemagglutinin cleavage site of avian influenza A viruses of H5 and H7 subtypes. Arch Virol., 1993, vol. 130(1-2), pp. 209-17.

Vachieri G., Xiong X., Collins P., Walker Ph., Martin S., Haire L., Zhang Yi., McCauley J., Gamblin S., Skehel J. Receptor binding by H10 influenza viruses. Nature, 2014, vol. 511, pp. 475–477.

Gamblin S., Haire L.F., Russell R.J., Stevens D.J., Xiao B., Ha Y., Vasisht N., Steinhauer D.A., Daniels R.S., Elliot A., Wiley D.C., Skehel J. The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science, 2004, vol. 303, pp. 1838–1842.

Xiong X., Martin S.R., Haire L.F., Wharton S.A., Daniels R.S., Bennett M.S., McCauley J.W., Collins P.J., Walker P.A., Skehel J.J., Gamblin S.J. Receptor binding by an H7N9 influenza virus from humans. Nature, 2013, vol. 499, pp. 496–499.

Zhang H., de Vries R.P., Tzarum N., Zhu X., Yu W., McBride R., Paulson J.C., Wilson I.A. A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors. Cell Host Microbe, 2015, vol. 17, pp. 377–384.

Yang H., Carney P.J., Chang J.C., Villanueva J.M., Stevens J. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes. J Virol., 2015. vol. 89, pp. 4612–4623.

Ramos I., Mansour M., Wohlbold T.J., Ermler M.E., Hirsh A., Runstadler J.A., Fernandez-Sesma A., Krammer F. Hemagglutinin receptor binding of a human isolate of influenza A (H10N8) virus. Emerg Infect Dis., 2015, vol. 21, pp. 1197–1201.