ADVANCING THE PRODUCTION OF VIRAL VECTORS FOR CAR-T CELL THERAPY IN KAZAKHSTAN
Main Article Content
Authors
L.R. Syzdykova
National center for biotechnology, 13/5 Korgalzhyn Road, Astana, 010000, Kazakhstan
V.V. Keyer
National center for biotechnology, 13/5 Korgalzhyn Road, Astana, 010000, Kazakhstan
R.Y. Arsienko
National center for biotechnology, 13/5 Korgalzhyn Road, Astana, 010000, Kazakhstan
B.K. Inirbay
National center for biotechnology, 13/5 Korgalzhyn Road, Astana, 010000, Kazakhstan
A.V. Shustov
National center for biotechnology, 13/5 Korgalzhyn Road, Astana, 010000, Kazakhstan
Abstract
Therapy of hematological tumors with chimeric antigen receptor-expressing T-cells (CAR-T) is a recent technology which holds promise to become the most significant achievement in oncohematology over the past 20 years. One aspect of the clinically applied CAR-T technology is that the process of production of CAR+ cells requires viral vectors which are used to deliver the CAR gene in T lymphocytes. At present the production of CAR-T therapy depends on the availability of packaged lentiviral or retroviral vectors. There is a worldwide deficiency in a production capacity to produce CAR vectors, and clinical-use vectors are not sold as off-the-shelf products.
At the National center for biotechnology the CAR receptor was assembled and this CAR targets the CD19 antigen which is a marker of tumor cells of the B-cell origin, lentiviral vectors were constructed. Studies on the production of packaged vectors were conducted at which three types of transfection reagents were compared for efficiency, in terms of the produced functional titers. A method was developed to measure functional titers using flow cytometry. High titers of the packaged vectors were obtained.
As the CAR-T is effective for treatment of patients after failure of traditional therapy, with relapse or refractory disease, all works on transfer of the CAR-T technology to Kazakhstan are of life importance to the patients with blood cancers in the country. The results underscore a necessity to organize a full production process to produce CAR vectors for clinical use and therapeutic cells for the CAR-T therapy at the NCB.
Keywords
viral vectors, CAR-T therapy, transfection, lentiviruses, polyethylenimine, hematological tumors
Article Details
References
Quinonez R., Sutton R.E. Lentiviral Vectors for Gene Delivery into Cells // DNA and Cell Biology. – 2004. – Vol. 21, № 12. – P. 937-951. Crossref
Labanieh L., Majzner R.G., Mackall C.L. Programming CAR-T cells to kill cancer // Nature Biomedical Engineering. – 2018. – Vol. 2. – P. 377-391. Crossref
Perica K., Varela J.C., Oelke M., Schneck J. Adoptive T Cell Immunotherapy For Cancer // Cancer Immunotherapy. – 2015. – Vol. 6, № 1. – P. e0004. Crossref
Rafic S., Hackett C.S., Brentjens R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy // Nature Reviews Clinical Oncology. – 2020. – Vol. 17. – P. 147-167. Crossref
Maude S.L., Laetsch T.W., Buechner J., Rives S., Boyer M., Bittencourt H., Bader P., Verneris M.R., Stefanski H.E., Myers G.D., Qayed M., De Moerloose B., Hiramatsu H., Schlis K., Davis K.L., Martin P.L., Nemecek E.R. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia // N. Engl. J. Med. - 2018. - Vol. 378, No. 5. - P. 439-448. Crossref
Shah B.D., Ghobadi A., Oluwole O.O., Logan A.C., Boissel N., Cassaday R.D., Leguay T., Bishop M.R., Topp M.S., Tzachanis D., Arellano M.L., Lin Y., Baer, M.R., Schiller G.J., Park J.H., Subklewe M., Abedi M. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study // Lancet. - 2021. - Vol. 398. - P.491-502. Crossref
Abramson J.S., Palomba M.L., Gordon L.I., Lunning M.A., Wang M., Arnason J., Mehta A., Purev E., Maloney D.G., Andreadis C., Sehgal A., Solomon S.R., Ghosh N., Albertson T.M., Garcia J., Kostic A., Mallaney M., Ogasawara K. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study // Lancet. - 2020. - Vol. 396. - P. 839-852. Crossref
Neelapu S.S., Locke F.L., Bartlett N.L., Lekakis L.J., Miklos D.B., Jacobson C.A., Braunschweig I., Oluwole O.O., Siddiqi T., Lin Y., Timmerman J.M., Stiff P.J., Friedberg J.W., Flinn I.W., Goy A., Hill B.T., Smith M.R. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma // N. Engl. J. Med. – 2017. – Vol. 377, - 2017. - Vol. 377, № 26. – P. 2531-2544. Crossref
Schuster S.J., Svoboda J., Chong E.A., Nasta S.D., Mato A.R., Anak Ö., Brogdon J.L., Pruteanu-Malinici I., Bhoj V., Landsburg D., Wasik M., Levine B.L., Lacey S.F., Melenhorst J.J., Porter D.L., June C.H. Chimeric antigen receptor T cells in refractory B-cell lymphomas // N. Engl. J. Med. – 2017. – Vol. 377, № 26. – P. 2545-2554. Crossref
Wang M., Munoz J., Goy A., Locke F.L., Jacobson C.A., Hill B.T., Timmerman J.M., Holmes H., Jaglowski S., Flinn I.W., McSweeney P.A., Miklos D.B., Pagel J.M., Kersten M.J., Milpied N. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma // N. Engl. J. Med. – 2020. – Vol. 382, № 14. – P. 1331-1342. Crossref
Stanton D. Commercial CAR-Ts: Ensuring lentivirus supply key for J&J and BMS // BioProcess International. – 2022. URL
Sadelain M., Brentjens R., Rivière I. The basic principles of chimeric antigen receptor design // Cancer Discov. – 2013. – Vol. 3, № 4. – P. 388-398. Crossref
Rodrigues A., Alves P. M., Coroadinha A. Production of retroviral and lentiviral gene therapy vectors: challenges in the manufacturing of lipid enveloped virus // Viral Gene Therapy. – 2011. - Crossref
Miller A.D. Retroviral vectors: from cancer viruses to therapeutic tools // Human Gene Tharapy. – 2014. – Vol. 25, № 12. – P. 989-994. Crossref
Irving M., Lanitis E., Migliorini D., Ivics Z., Guedan S. Choosing the right tool for genetic engineering: clinical lessons from chimeric antigen receptor-T cells // Human Gene Therapy. – 2021. – Vol. 32, № 19. – P. 1044-1058. Crossref
Ding P., Kharytonchyk S., Kuo N., et.al. 5’-Cap sequestration is an essential determinant of HIV-1 genome packaging // PNAS. – 2021. – Vol. 118, № 37. – P. e2112475118. Crossref
Merten O-W., Hebben M., Boolenta C. Production of lentiviral vectors // Mol. Ther. Methods Clin Dev. – 2016. – Vol. 3. – P. 16017. Crossref
Allahverdi A., Eskandari F. et.al. Lentiviral vectors titration using real-time PCR // Archives of Advances in Biosciences. – 2015. – Vol. 6, № 1. – P. 80-84. Crossref
Tang Y., Garson K., Li L., Vanderhuden B.C. Optimization of lentiviral vector production using polyethylenimine mediated transfection // Oncology letters. - 2014. – Vol. 9, № 1. – P. 55-62. Crossref