Main Article Content


Yu. Genievskaya

Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
al-Farabi Kazakh National University, Almaty 050040, Kazakhstan

Sh. Almerekova

Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan

S. Abugalieva

Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan

A. Abugalieva

Kazakh Research Institute of Agriculture and Plant Growing, Almalybak 040909, Almaty region, Kazakhstan

V. Chudinov

Karabalyk Agricultural Experimental Station, Nauchnoe 110908, Kostanay region, Kazakhstan

Ye. Turuspekov

Karabalyk Agricultural Experimental Station, Nauchnoe 110908, Kostanay region, Kazakhstan


Barley is a cereal crop that is grown all over the world. Its grain is used for animal feed, malting, brewing, and food. The quality of barley grain is important, particularly raw starch and protein contents, and it depends on the end-use product. This study looked at a collection of 356 barley accessions from the USA and Kazakhstan grown under conditions of northern Kazakhstan (Karabalyk agricultural experimental station) and genotyped with 1631 polymorphic SNPs markers. The collection was studied for starch (GSC), protein (GPC), cellulose (GCC), and lipids contents (GLC), and for grain test weight (TWL) during two years. Phenotypic analysis demonstrated impact of the year on studied traits and significant associations between grain quality and the yield (P < 0.01). Population structure analysis revealed three subclusters in the studied barley collection with the dominance of the USA’s barley in two of them. As a result of GWAS, 22 significant QTLs (P < 0.001) were identified for the studied grain quality traits including 19 single-trait QTLs, 2 double-trait QTLs, and a one triple-trait QTL. For 16 QTLs, reference quality genes and/or QTLs were found, while the remaining 6 QTLs were presumably novel genetic factors for grain quality traits. As result, these 22 QTLs are expected to be useful for future breeding projects targeting the selection of high grain quality barley cultivars.


Hordeum vulgare L., starch, protein, cellulose, lipids, grain test weight, marker-assisted selection

Article Details


Statista Portal. Available at: URL (Accessed 15.09.2023).

Agency for Strategic planning and reforms of the Republic of Kazakhstan Bureau of National statistics. Available at: URL (Accessed 15.09.2023).

Tricase C., Amicarelli V., Lamonaca E., Rana R.L. Economic analysis of the barley market and related uses. Grasses as food and feed., 2018., Vol. 10., P. 25-46.

Geng L., Li M., Zhang G., Ye L. Barley: a potential cereal for producing healthy and functional foods. Food Quality and Safety., 2022., V. 6., P. fyac012.

Henry R.J. The carbohydrates of barley grains—A review. Journal of the Institute of Brewing., 1988., Vol. 94., No. 2., P. 71-78.

Gubatz S., Shewry P.R., Ullrich S. The development, structure, and composition of the barley grain. Barley: production, improvement, and uses., 2010., Vol. 11., P. 391.

Fox G.P. Chemical composition in barley grains and malt quality. Genetics and improvement of barley malt quality., Berlin, Heidelberg: Springer Berlin Heidelberg, 2009., P. 63-98.

State standard 5060-2021. Yachmen pivovarenniy. Tehnicheskiye usloviya [Malting barley. Technical specifications]. – Moscow: Standart inform, 2021. – 7 p.

Smith, A.M. The biosynthesis of starch granules. Biomacromolecules., 2001., Vol. 2., P. 335-341.

Collins H.M., Betts N.S., Dockter C., Berkowitz O., Braumann I., Cuesta-Seijo J.A., Skadhauge B., Whelan J., Bulone V., Fincher G.B. Genes that mediate starch metabolism in developing and germinated barley grain. Frontiers in Plant Science., 2021., Vol. 12., P. 641325.

Qi J. C., Zhang G. P., Zhou M. X. Protein and hordein content in barley seeds as affected by nitrogen level and their relationship to beta-amylase activity. Journal of Cereal Science., 2006., Vol. 43., No. 1., P. 102-107.

Jaeger A., Zannini E., Sahin A.W., Arendt E.K. Barley protein properties, extraction and applications, with a focus on brewers’ spent grain protein. Foods., 2021., Vol. 10., No. 6., P. 1389.

Vinje M.A., Walling J.G., Henson C.A., Duke S.H. Comparative gene expression analysis of the β-amylase and hordein gene families in the developing barley grain. Gene., 2019., Vol. 693., P. 127-136.

Jamar C., Loffet F., Frettinger P., Ramsay L., Fauconnier M.L., Du Jardin P. NAM-1 gene polymorphism and grain protein content in Hordeum. Journal of Plant Physiology., 2010., Vol. 167., No. 6., P. 497-501.

Cai S., Yu G., Chen X., Huang Y., Jiang X., Zhang G., Jin X. Grain protein content variation and its association analysis in barley. BMC plant biology., 2013., Vol. 13., No. 1., P. 1-11.

Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science., 2006., Vol. 314., No. 5803., P. 1298-1301.

Hagenblad J., Vanhala T., Madhavan S., Leino M.W. Protein content and HvNAM alleles in Nordic barley (Hordeum vulgare) during a century of breeding. Hereditas., 2022., Vol. 159., No. 1., P. 1-13.

Fedak G., Roche I.D.L. Lipid and fatty acid composition of barley kernels. Canadian Journal of Plant Science., 1977., Vol. 57., No. 1., P. 257-260.

Kannangara R., Branigan C., Liu Y., Penfield T., Rao V., Mouille G., Hofte H., Pauly M., Riechmann J.L., Broun P. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. The Plant Cell., 2007., Vol. 19., No. 4., P. 1278-1294.

Taketa S., Amano S., Tsujino Y., Sato T., Saisho D., Kakeda K., Nomura M., Suzuki T., Matsumoto T., Sato K., et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proceedings of the National Academy of Sciences., 2008., Vol. 105., No. 10., P. 4062-4067.

Little A., Schwerdt J.G., Shirley N.J., Khor S.F., Neumann K., O’Donovan L.A., Lahnstein J., Collins H.M., Henderson M., Fincher G.B., et al. Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. Plant physiology., 2018., Vol. 177., No. 3., P. 1124-1141.

Xu Y., Li P., Yang Z., Xu C. Genetic mapping of quantitative trait loci in crops. The Crop Journal., 2017., Vol. 5., No. 2., P. 175-184.

Cockram J., Mackay I. Genetic mapping populations for conducting high-resolution trait mapping in plants. Plant genetics and molecular biology., 2018., P. 109-138.

Emebiri L.C., Moody D.B., Panozzo J.F., Chalmers K.J., Kretschmer J.M., Ablett G.A. Identification of QTLs associated with variations in grain protein concentration in two-row barley. Australian Journal of Agricultural Research., 2003., Vol. 54., No. 12., P. 1211-1221.

Li J.Z., Huang X.Q., Heinrichs F., Ganal M.W., Röder M.S. Analysis of QTLs for yield components agronomic traits and disease resistance in an advanced backcross population of spring barley. Genome., 2006., Vol. 49., No. 5., P. 454-466.

Abdel-Haleem H., Bowman J., Giroux M., Kanazin V., Talbert H., Surber L., Blake T. Quantitative trait loci of acid detergent fiber and grain chemical composition in hulled× hull-less barley population. Euphytica., 2010., Vol. 172., P. 405-418.

Marquez-Cedillo L.A., Hayes P.M., Kleinhofs A., LeggeW.G., Rossnagel B.G., Sato K., Ullrich S.E., Wesenberg D.M. QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theoretical and Applied Genetics., 2001., Vol. 103., P. 625-637.

Peñalba J.V., Wolf J.B. From molecules to populations: appreciating and estimating recombination rate variation. Nature Reviews Genetics., 2020., Vol. 21., No. 8., P. 476-492.

Stumpf M.P., McVean G.A. Estimating recombination rates from population-genetic data. Nature Reviews Genetics., 2003., Vol. 4., No. 12., P. 959-968.

Pauli D., Muehlbauer G.J., Smith K.P., Cooper B., Hole D., Obert D.E., Ullrich S.E., Blake T.K. Association mapping of agronomic QTLs in US spring barley breeding germplasm. The Plant Genome., 2014., Vol. 7., No. 3., P. plantgenome2013.11.0037.

Genievskaya Y., Almerekova S., Sariev B., Chudinov V., Tokhetova L., Sereda G., Ortaev A., Tsygankov V., Blake T., Chao S., et al. Marker-trait associations in two-rowed spring barley accessions from Kazakhstan and the USA. PloS one., 2018., Vol. 13., No. 10., P. e0205421.

Gutiérrez L., Germán S., Pereyra S., Hayes P.M., Pérez C.A., Capettini F., Locatelli A., Berberian N.M., Falconi E.E., Estrada R., et al. Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. Theoretical and applied genetics., 2015., Vol. 128., P. 501-516.

Genievskaya Y., Zatybekov A., Abugalieva S., Turuspekov Y. Identification of quantitative trait loci associated with powdery mildew resistance in spring barley under conditions of southeastern Kazakhstan. Plants., 2023., Vol. 12., P. 2375.

Fan Y., Zhou G., Shabala S., Chen Z.H., Cai S., Li C., Zhou M. Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L.). Frontiers in plant science., 2016., Vol. 7., P. 946.

Li M., Geng L., Xie S.,Wu D., Ye L., Zhang G. Genome-wide association study on total starch amylose and amylopectin in barley grain reveals novel putative alleles. International journal of molecular sciences., 2021., Vol. 22., No. 2., P. 553.

Waugh R., Jannink J.L., Muehlbauer G.J., Ramsay L. The emergence of whole genome association scans in barley. Current Opinion in Plant Biology., 2009., Vol. 12., No. 2., P. 218-222.

Genievskaya Y., Almerekova S., Abugalieva S., Abugalieva A., Sato K., Turuspekov Y. Identification of SNPs associated with grain quality traits in spring barley collection grown in southeastern Kazakhstan. Agronomy., 2023., Vol. 13., P. 1560.

The Triticeae Toolbox (T3) Database. Available at: URL (Accessed 02.05.2023).

State standard 10840-2017. Zerno. Metod opredeleniya natury [Grain. Method for test weight assessment]. – Moscow. : Standart inform, 2019. – 19 p.

The R Project for Statistical Computing. Available at: URL (Accessed 10.02.2023).

Posit|The Open-Source Data Science Company. Available at: URL (Accessed 10.02.2023).

Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics., 2007., Vol. 23., No. 19., P. 2633-2635.

Falush D., Wirth T., Linz B., Pritchard J.K., Stephens M., Kidd M., Blaser M.J., Graham D.Y., Vacher S., Perez-Perez G.I., et al. Traces of human migrations in Helicobacter pylori populations. Science., 2003., Vol. 299., No. 5612., P. 1582-1585.

Earl D.A., VonHoldt B.M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources., 2012., Vol. 4., P. 359-361.

Wang J., Zhang Z. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genomics proteomics & bioinformatics., 2021., Vol. 19., No. 4., P. 629-640.

Genievskaya Y., Almerekova S., Abugalieva S., Chudinov V., Blake T., Abugalieva A., Turuspekov Y. Identification of SNP markers associated with grain quality traits in a barley collection (Hordeum vulgare L.) harvested in Kazakhstan. Agronomy., 2022., Vol. 12., P. 2431.

Bayer M.M., Rapazote-Flores P., Ganal M., Hedley P.E., Macaulay M., Plieske J., Ramsay L., Russell J., Shaw P.D., Thomas W., et al. Development and evaluation of a barley 50k iSelect SNP array. Frontiers in plant science., 2017., Vol. 8., P. 1792.

Szucs P., Blake V.C., Bhat P.R., Chao S., Close T.J., Cuesta-Marcos A., Muehlbauer G.J., Ramsay L., Waugh R., Hayes P.M. An integrated resource for barley linkage map and malting quality QTL alignment. The Plant Genome., 2009., Vol. 2., No. 2.

Close T.J., Wanamaker S.I., Caldo R.A., Turner S.M., Ashlock D.A., Dickerson J.A., Wing R.A., Muehlbauer G.J., Kleinhofs A., Wise R.P. A new resource for cereal genomics: 22K barley GeneChip comes of age. Plant Physiology., 2004., Vol. 134., No. 3., P. 960-968.

Samarah N. H. Effects of drought stress on growth and yield of barley. Agronomy for sustainable development., 2005., Vol. 25., No. 1., P. 145-149.

Haddadin M. F. Assessment of drought tolerant barley varieties under water stress. International Journal of Agriculture and Forestry., 2015., Vol. 5., No. 2., P. 131-137.

Gous P.W., Gilbert R.G., Fox G.P. Drought‐proofing barley (Hordeum vulgare) and its impact on grain quality: A review. Journal of the Institute of Brewing., 2015., Vol. 121., No. 1., P. 19-27.

Tibbs Cortes L., Zhang Z., Yu J. Status and prospects of genome-wide association studies in plants. The Plant Genome., 2021., Vol. 14., P. e20077.

Zhang L.Y., Marchand S., Tinker N.A., Belzile F. Population structure and linkage disequilibrium in barley assessed by DArT markers. Theoretical and applied genetics., 2009., Vol. 119., P. 43-52.

Hamblin M.T., Close T.J., Bhat P.R., Chao S., Kling J.G., Abraham K.J., Blake T., Brooks W.S., Cooper B., Griffey C.A., et al. Population structure and linkage disequilibrium in US barley germplasm: implications for association mapping. Crop Science., 2010., Vol. 50., No. 2., P. 556-566.

Almerekova S., Genievskaya Y., Abugalieva S., Sato K., Turuspekov Y. Population structure and genetic diversity of two-rowed barley accessions from Kazakhstan based on SNP genotyping data. Plants., 2021., Vol. 10., No. 10., P. 2025.

Pathuri I.P., Reitberger I.E., Hückelhoven R., Proels R.K. Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f. sp. hordei. Journal of experimental botany., 2011., Vol. 62., No. 10., P. 3449-3457.

Komatsuda T., Pourkheirandish M., He C., Azhaguvel P., Kanamori H., et al. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proceedings of the National Academy of Sciences., 2007., Vol. 104., No. 4., P. 1424-1429.

Zhang, Z., Zhao, H., Tang, J., Li, Z., Li, Z., Chen, D., Lin, W. A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) inferior spikelets. PloS one., 2014., Vol. 9., No. 2., P. e89140.

Li Q., Pan Z., Liu J., Deng G., Long H., et al. A mutation in Waxy gene affects amylose content, starch granules and kernel characteristics of barley (Hordeum vulgare). Plant Breeding., 2019., Vol. 138., No. 5., P. 513-523.

Tommasini L., Svensson J.T., Rodriguez E.M., Wahid A., Malatrasi M., et al. Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). Functional & integrative genomics., 2008., Vol. 8., P. 387-405.