THE OBTAINING OF THE RECOMBINANT CAMEL CHYMOSIN BY SUBMERGE FERMENTATION IN THE PILOT BIOREACTOR

Main Article Content

Authors

Zh. Akishev

National Center for Biotechnology, 13/5 Korgalzhyn Road, Astana, 010000
Faculty of natural sciences, L.N.Gumilyev Eurasian National University, 2 Kanysh Satpayev Street, Astana, 010008

A. Abdullayeva

National Center for Biotechnology, 13/5 Korgalzhyn Road, Astana, 010000

A. Mussakhmetov

National Center for Biotechnology, 13/5 Korgalzhyn Road, Astana, 010000
Faculty of natural sciences, L.N.Gumilyev Eurasian National University, 2 Kanysh Satpayev Street, Astana, 010008

A. Bekbayeva

National Center for Biotechnology, 13/5 Korgalzhyn Road, Astana, 010000
Faculty of natural sciences, L.N.Gumilyev Eurasian National University, 2 Kanysh Satpayev Street, Astana, 010008

A. Tursunbekova

S.Seifullin Kazakh Agro Technical University, 62 Zhenis Avenue, Astana, 010001

B. Kalemshariv

S.Seifullin Kazakh Agro Technical University, 62 Zhenis Avenue, Astana, 010001

T. Tultabayeva

S.Seifullin Kazakh Agro Technical University, 62 Zhenis Avenue, Astana, 010001

B. Khassenov

National Center for Biotechnology, 13/5 Korgalzhyn Road, Astana, 010000
“GenLab” LLP, 19/1, 69, M. Gabdullin Street, Astana, 010000

 

Abstract

In the cheese making industry, chymosin is used as a milk-clotting enzyme. With its high specific activity against κ-casein, chymosin better than other proteolytic enzymes. Bactrian camel chymosin has a milk-clotting activity higher than calf chymosin. A scheme for obtaining a milk-clotting preparation based on recombinant camel chymosin is proposed. Submerge fermentation of recombinant yeast Pichia pastoris was carried out in a 50-liter bioreactor and recombinant camel chymosin was obtained. The activity of chymosin in the yeast culture was 174.5 U/mL. Chymosin was concentrated 5.6-fold by cross-flow ultrafiltration with 10 kDa cut-off membrane, and chymosin was purified by ion exchange chromatography. The activity of purified chymosin was 4700 U/mL. By sublimation drying with casein peptone, the powder chymosin was obtained with an activity of 36,000 U/g. The proposed scheme for obtaining a milk-clotting drug based on recombinant camel chymosin using submerge fermentation of recombinant yeast has the prospect of being used at biotechnological enterprises. 

Keywords

Chymosin, Fermentation, Camel, Calf, Bioreactor, Freeze-drying

Article Details

References

Foltmann B. Prochymosin and chymosin (prorennin and rennin) // Biochem J. ‒ 1969. ‒ TVol. 115, No 3. ‒ P. 3p-4p.

Mohanty A. K., Mukhopadhyay U. K., Grover S., Batish V. K. Bovine chymosin: production by rDNA technology and application in cheese manufacture // Biotechnol Adv. ‒ 1999. ‒ Vol. 17, No 2-3. ‒ P. 205-17.

Flamm E. L. How FDA approved chymosin: a case history // Biotechnology (N Y). ‒ 1991. ‒ Vol. 9, No 4. ‒ P. 349-51.

Johnson M. E. A 100-Year Review: Cheese production and quality // J Dairy Sci. ‒ 2017. ‒ Vol. 100, No 12. ‒ P. 9952-9965.

Bansal N., Drake M. A., Piraino P., Broe M. L., Harboe M., Fox P. F., McSweeney P. L. H. Suitability of recombinant camel (Camelus dromedarius) chymosin as a coagulant for Cheddar cheese // International Dairy Journal. ‒ 2009. ‒ Vol. 19, No 9. ‒ P. 510-517.

Moynihan A. C., Govindasamy-Lucey S., Jaeggi J. J., Johnson M. E., Lucey J. A., McSweeney P. L. Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim Mozzarella cheese // J Dairy Sci. ‒ 2014. ‒ Vol. 97, No 1. ‒ P. 85-96.

Langholm Jensen J., Mølgaard A., Navarro Poulsen J. C., Harboe M. K., Simonsen J. B., Lorentzen A. M., Hjernø K., van den Brink J. M., Qvist K. B., Larsen S. Camel and bovine chymosin: the relationship between their structures and cheese-making properties // Acta Crystallogr D Biol Crystallogr. ‒ 2013. ‒ Vol. 69, No Pt 5. ‒ P. 901-13.

Gumus P., Hayaloglu A. A. Effects of blends of camel and calf chymosin on proteolysis, residual coagulant activity, microstructure, and sensory characteristics of Beyaz peynir // J Dairy Sci. ‒ 2019. ‒ Vol. 102, no 7. ‒ P. 5945-5956.

Al-Zoreky N. S., Almathen F. S. Using recombinant camel chymosin to make white soft cheese from camel milk // Food Chem. ‒ 2021. ‒ Vol. 337. ‒ P. 127994.

Akishev Z., Kiribayeva A., Mussakhmetov A., Baltin K., Ramankulov Y., Khassenov B. Constitutive expression of Camelus bactrianus prochymosin B in Pichia pastoris // Heliyon. ‒ 2021. ‒ Vol. 7, No 5. ‒ P. e07137.

Kappeler S. R., van den Brink H. J., Rahbek-Nielsen H., Farah Z., Puhan Z., Hansen E. B., Johansen E. Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk // Biochem Biophys Res Commun. ‒ 2006. ‒ Vol. 342, No 2. ‒ P. 647-54.

Langholm Jensen J., Molgaard A., Navarro Poulsen J. C., Harboe M. K., Simonsen J. B., Lorentzen A. M., Hjerno K., van den Brink J. M., Qvist K. B., Larsen S. Camel and bovine chymosin: the relationship between their structures and cheese-making properties // Acta Crystallogr D Biol Crystallogr. ‒ 2013. ‒ Vol. 69, No Pt 5. ‒ P. 901-13.

Damasceno L. M., Huang C. J., Batt C. A. Protein secretion in Pichia pastoris and advances in protein production // Appl Microbiol Biotechnol. ‒ 2012. ‒ Vol. 93, No 1. ‒ P. 31-9.

Obst U., Lu T. K., Sieber V. A Modular Toolkit for Generating Pichia pastoris Secretion Libraries // ACS Synth Biol. ‒ 2017. ‒ Vol. 6, No 6. ‒ P. 1016-1025.

Baghban R., Farajnia S., Rajabibazl M., Ghasemi Y., Mafi A., Hoseinpoor R., Rahbarnia L., Aria M. Yeast Expression Systems: Overview and Recent Advances // Mol Biotechnol. ‒ 2019. ‒ Vol. 61, No 5. ‒ P. 365-384.

Jungbauer A., Hahn R. Chapter 22 Ion-Exchange Chromatography // Methods in Enzymology / Burgess R. R., Deutscher M. P.Academic Press, 2009. ‒ P. 349-371.

Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 // Nature. ‒ 1970. ‒ Vol. 227, No 5259. ‒ P. 680-5.

Ageitos J. M., Vallejo J. A., Sestelo A. B., Poza M., Villa T. G. Purification and characterization of a milk-clotting protease from Bacillus licheniformis strain USC13 // J Appl Microbiol. ‒ 2007. ‒ Vol. 103, No 6. ‒ P. 2205-13.

Fox P. F., O'Connor T. P., McSweeney P. L., Guinee T. P., O'Brien N. M. Cheese: physical, biochemical, and nutritional aspects // Adv Food Nutr Res. ‒ 1996. ‒ Vol. 39. ‒ P. 163-328.

Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal Biochem. ‒ 1976. ‒ Vol. 72. ‒ P. 248-54.

Hayaloglu A. A., Guven M., Fox P. Microbiological, biochemical and technological properties of Turkish White cheese 'Beyaz Peynir' // International Dairy Journal. ‒ 2002. ‒ Vol. 12. ‒ P. 635-648.

Tang S., Boehme L., Lam H., Zhang Z. Pichia pastoris fermentation for phytase production using crude glycerol from biodiesel production as the sole carbon source // Biochemical Engineering Journal - BIOCHEM ENG J. ‒ 2009. ‒ Vol. 43. ‒ P. 157-162.

Ahmad M., Hirz M., Pichler H., Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production // Appl Microbiol Biotechnol. ‒ 2014. ‒ Vol. 98, No 12. ‒ P. 5301-17.

Cos O., Ramón R., Montesinos J. L., Valero F. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review // Microb Cell Fact. ‒ 2006. ‒ Vol. 5. ‒ P. 17.

Murray W. D., Duff S. J. B., Lanthier P. H. Induction and stability of alcohol oxidase in the methylotrophic yeast Pichia pastoris // Applied Microbiology and Biotechnology. ‒ 1989. ‒ Vol. 32, No. 1. ‒ P. 95-100.

Pal Y., Khushoo A., Mukherjee K. J. Process optimization of constitutive human granulocyte–macrophage colony-stimulating factor (hGM-CSF) expression in Pichia pastoris fed-batch culture // Applied Microbiology and Biotechnology. ‒ 2006. ‒ Vol. 69, No. 6. ‒ P. 650-657.

Goodrick J. C., Xu M., Finnegan R., Schilling B. M., Schiavi S., Hoppe H., Wan N. C. High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system // Biotechnol Bioeng. ‒ 2001. ‒ Vol. 74, No. 6. ‒ P. 492-7.

Szecsi P. B. The aspartic proteases // Scand J Clin Lab Invest Suppl. ‒ 1992. ‒ Vol. 210. ‒ P. 5-22.

Bisht D., Iqbal Z. LYOPHILIZATION - PROCESS AND OPTIMIZATION FOR PHARMACEUTICALS // International Journal of Drug Regulatory Affairs. ‒ 2018. ‒ Vol. 3. ‒ P. 30-40.

Godbey W. T. Chapter 3 - Proteins // Biotechnology and its Applications (Second Edition) / Godbey W. T.Academic Press, 2022. ‒ P. 47-72.

Ersöz F., İnan M. Large-scale production of yak (Bos grunniens) chymosin A in Pichia pastoris // Protein Expr Purif. ‒ 2019. ‒ Vol. 154. ‒ P. 126-133.

Jiang X. P., Yin M. L., Chen P., Yang Q. Constitutive expression, purification and characterization of bovine prochymosin in Pichia pastoris GS115 // World J Microbiol Biotechnol. ‒ 2012. ‒ Vol. 28, No 5. ‒ P. 2087-93.

Stergiadis S., Nørskov N. P., Purup S., Givens I., Lee M. R. F. Comparative Nutrient Profiling of Retail Goat and Cow Milk // Nutrients. ‒ 2019. ‒ Vol. 11, No. 10.