DRUG-RESISTANCE AND COMPENSATORY MUTATIONS IN MYCOBACTERIUM TUBERCULOSIS

Main Article Content

Authors

D. Auganova

National Center for Biotechnology, 13/5 Korgalzhyn Highway, Astana, 010000, Kazakhstan

A. Akisheva

City Center for Phthisiopulmonology of the Akimat of Astana, A1 Street, Building 5, 010000, Astana, Kazakhstan

A. Tsepke

City Center for Phthisiopulmonology of the Akimat of Astana, A1 Street, Building 5, 010000, Astana, Kazakhstan

P. Tarlykov

National Center for Biotechnology, 13/5 Korgalzhyn Highway, Astana, 010000, Kazakhstan

Abstract

Gram-positive bacteria of Mycobacterium tuberculosis complex (MTBC) are causative agents of tuberculosis disease. According to the report of the World Health Organization, tuberculosis is one of the leading causes of mortality worldwide.  Moreover, epidemiological data shows that due to the COVID-19 pandemic tuberculosis mortality has risen in comparison with previous years. Drug resistance is another threatening issue when the resistance to antitubercular (anti-TB) drugs makes therapy less effective. Furthermore, drug resistance is often burdened with compensatory mechanisms that overcome fitness defects related to drug-resistant mutations. This review discusses the drug resistance and compensatory mutations in Mycobacterium tuberculosis and the current situation with anti-TB drug resistance in the Republic of Kazakhstan.

Keywords

Mycobacterium tuberculosis, drug-resistance, rifampicin, isoniazid

Article Details

References

World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO., Global tuberculosis report 2021. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO., vol. 59. 2021.

WHO, GLOBAL TUBERCULOSIS REPORT 2018, vol. 63, no. 10. 2018. [Online]. Available: URL

WHO, Global Tuberculosis Reports 2020, vol. 188, no. 4870. 2020. doi: 10.1016/S0140-6736(00)58733-9.

World Health Organization, Annual Report of Tuberculosis, vol. 4, no. 1. 2022. [Online]. Available: URL

P. Nahid et al., Treatment of drug-resistant tuberculosis an official ATS/CDC/ERS/IDSA clinical practice guideline, vol. 200, no. 10. 2019. doi: 10.1164/rccm.201909-1874ST.

J. Millard, C. Ugarte-Gil, and D. A. J. Moore, ‘Multidrug resistant tuberculosis’, BMJ, vol. 350, no. February, pp. 1–6, 2015, doi: 10.1136/bmj.h882.

S. Tiberi, E. Pontali, M. Tadolini, L. D’Ambrosio, and G. B. Migliori, ‘Challenging MDR-TB clinical problems – The case for a new Global TB Consilium supporting the compassionate use of new anti-TB drugs’, Int. J. Infect. Dis., vol. 80, pp. S68–S72, 2019, doi: 10.1016/j.ijid.2019.01.040.

WHO, ‘WHO global lists of high burden countries for tuberculosis (TB), TB/HIV and multidrug/rifampicin-resistant TB (MDR/RR-TB), 2021-2025’, pp. 1–16, 2021.

Z. K. Rakisheva, G. S. Balasanyants, A. S. Akisheva, A. B. Tsepke, and N. S. Solovieva, ‘Prevalence of drug resistance to first line drugs among tuberculosis patients in Astana’, Tuberc. Lung Dis., vol. 96, no. 8, pp. 50–54, 2018, doi: 10.21292/2075-1230-2018-96-8-50-54.

I. Comas et al., ‘Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes’, Nat. Genet., vol. 44, no. 1, pp. 106–110, 2012, doi: 10.1038/ng.1038.

N. Casali et al., ‘Evolution and transmission of drug-resistant tuberculosis in a Russian population’, Nat. Genet., vol. 46, no. 3, pp. 279–286, 2014, doi: 10.1038/ng.2878.

R. Rawat, A. Whitty, and P. J. Tonge, ‘The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance’, Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. SUPPL. 2, pp. 13881–13886, 2003, doi: 10.1073/pnas.2235848100.

H. R. van Doorn, P. E. W. de Haas, K. Kremer, C. M. J. E. Vandenbroucke-Grauls, M. W. Borgdorff, and D. van Soolingen, ‘Public health impact of isoniazid-resistant Mycobacterium tuberculosis strains with a mutation at amino-acid position 315 of katG: A decade of experience in The Netherlands’, Clin. Microbiol. Infect., vol. 12, no. 8, pp. 769–775, 2006, doi: 10.1111/j.1469-0691.2006.01495.x.

S. N. Silva et al., ‘Isoniazid-Resistant Isolates of Mycobacterium tuberculosis’, Society, vol. 41, no. 9, pp. 4471–4474, 2003, doi: 10.1128/JCM.41.9.4471.

A. Banerjee et al., ‘inhA, Encoding Target Mycobacterium’, Science (80-. )., vol. 263, no. September, pp. 227–230, 1993.

W. Löscher, ‘Molecular mechanisms of drug resistance in status epilepticus’, Epilepsia, vol. 50, pp. 19–21, 2009, doi: 10.1111/j.1528-1167.2009.02367.x.

M. C. Li et al., ‘RpoB mutations and effects on rifampin resistance in mycobacterium tuberculosis’, Infect. Drug Resist., vol. 14, no. September, pp. 4119–4128, 2021, doi: 10.2147/IDR.S333433.

F. Brossier et al., ‘Molecular analysis of the embCAB locus and embR gene involved in ethambutol resistance in clinical isolates of Mycobacterium tuberculosis in France’, Antimicrob. Agents Chemother., vol. 59, no. 8, pp. 4800–4808, 2015, doi: 10.1128/AAC.00150-15.

A. Scorpio and Y. Zhang, ‘Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus’, Nat. Med., vol. 2, no. 6, pp. 662–667, 1996, doi: 10.1038/nm0696-662.

A. Aubry, X. S. Pan, L. M. Fisher, V. Jarlier, and E. Cambau, ‘Mycobacterium tuberculosis DNA Gyrase: Interaction with Quinolones and Correlation with Antimycobacterial Drug Activity’, Antimicrob. Agents Chemother., vol. 48, no. 4, pp. 1281–1288, 2004, doi: 10.1128/AAC.48.4.1281-1288.2004.

H. E. Takiff et al., ‘Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations’, Antimicrob. Agents Chemother., vol. 38, no. 4, pp. 773–780, 1994, doi: 10.1128/AAC.38.4.773.

A. F. B. Cheng, W. W. Yew, E. W. C. Chan, M. L. Chin, M. M. M. Hui, and R. C. Y. Chan, ‘Multiplex PCR Amplimer Conformation Analysis for Rapid Detection of gyrA Mutations in Fluoroquinolone-Resistant Mycobacterium tuberculosis Clinical Isolates’, Antimicrob. Agents Chemother., vol. 48, no. 2, pp. 596–601, 2004, doi: 10.1128/AAC.48.2.596-601.2004.

J. M. Musser, ‘Antimicrobial agent resistance in mycobacteria: Molecular genetic insights’, Clin. Microbiol. Rev., vol. 8, no. 4, pp. 496–514, 1995, doi: 10.1128/cmr.8.4.496.

L. Jugheli, N. Bzekalava, P. De Rijk, K. Fissette, F. Portaels, and L. Rigouts, ‘High level of cross-resistance between kanamycin, amikacin, and capreomycin among Mycobacterium tuberculosis isolates from Georgia and a close relation with mutations in the rrs gene’, Antimicrob. Agents Chemother., vol. 53, no. 12, pp. 5064–5068, 2009, doi: 10.1128/AAC.00851-09.

C. E. Maus, B. B. Plikaytis, and T. M. Shinnick, ‘Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis’, Antimicrob. Agents Chemother., vol. 49, no. 8, pp. 3192–3197, 2005, doi: 10.1128/AAC.49.8.3192-3197.2005.

S. K. Johansen, C. E. Maus, B. B. Plikaytis, and S. Douthwaite, ‘Capreomycin Binds across the Ribosomal Subunit Interface Using tlyA-Encoded 2′-O-Methylations in 16S and 23S rRNAs’, Mol. Cell, vol. 23, no. 2, pp. 173–182, 2006, doi: 10.1016/j.molcel.2006.05.044.

M. A. Zaunbrecher, R. D. Sikes, B. Metchock, T. M. Shinnick, and J. E. Posey, ‘Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis’, Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 47, pp. 20004–20009, 2009, doi: 10.1073/pnas.0907925106.

S. Ramaswamy and J. M. Musser, ‘Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update’, Tuber. Lung Dis., vol. 79, no. 1, pp. 3–29, 1998, doi: 10.1054/tuld.1998.0002.

M. Merker et al., ‘Compensatory evolution drives multidrug-resistant tuberculosis in central Asia’, Elife, vol. 7, pp. 1–31, 2018, doi: 10.7554/eLife.38200.

S. M. Blower and T. Chou, ‘Modeling the emergence of the “hot zones”: Tuberculosis and the amplification dynamics of drug resistance’, Nat. Med., vol. 10, no. 10, pp. 1111–1116, 2004, doi: 10.1038/nm1102.

T. Cohen and M. Murray, ‘Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness’, Nat. Med., vol. 10, no. 10, pp. 1117–1121, 2004, doi: 10.1038/nm1110.

C. Yanofsky and V. Horn, ‘Rifampin resistance mutations that alter the efficiency of transcription termination at the tryptophan operon attenuator’, J. Bacteriol., vol. 145, no. 3, pp. 1334–1341, 1981, doi: 10.1128/jb.145.3.1334-1341.1981.

B. Weisblum and J. Davies, ‘Antibiotic inhibitors of the bacterial ribosome’, Bacteriol. Rev., vol. 32, no. 4_pt_2, pp. 493–528, 1968, doi: 10.1128/br.32.4_pt_2.493-528.1968.

M. G. Reynolds, ‘Compensatory evolution in rifampin-resistant Escherichia coli’, Genetics, vol. 156, no. 4, pp. 1471–1481, 2000, doi: 10.1093/genetics/156.4.1471.

Q. H. Nguyen, L. Contamin, T. V. A. Nguyen, and A. L. Bañuls, ‘Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis’, Evol. Appl., vol. 11, no. 9, pp. 1498–1511, 2018, doi: 10.1111/eva.12654.

A. K. Alame Emane, X. Guo, H. E. Takiff, and S. Liu, ‘Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis’, Tuberculosis, vol. 129, no. March, p. 102091, 2021, doi: 10.1016/j.tube.2021.102091.

T. M. Walker et al., ‘The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis’, The Lancet Microbe, vol. 3, no. 4, pp. e265–e273, 2022, doi: 10.1016/S2666-5247(21)00301-3.

N. Q. Huy et al., ‘Molecular analysis of pyrazinamide resistance in Mycobacterium tuberculosis in Vietnam highlights the high rate of pyrazinamide resistance-associated mutations in clinical isolates’, Emerg. Microbes Infect., vol. 6, no. 10, 2017, doi: 10.1038/emi.2017.73.

K. A. Cohen et al., ‘Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal’, PLoS Med., vol. 12, no. 9, pp. 1–22, 2015, doi: 10.1371/journal.pmed.1001880.

B. J. Klotoe et al., ‘Genomic characterization of MDR/XDR-TB in Kazakhstan by a combination of high-throughput methods predominantly shows the ongoing transmission of L2/Beijing 94-32 central Asian/Russian clusters’, BMC Infect. Dis., vol. 19, no. 1, pp. 1–12, 2019, doi: 10.1186/s12879-019-4201-2.

Y. Skiba et al., ‘Molecular snapshot of Mycobacterium tuberculosis population in Kazakhstan: A country-wide study’, Tuberculosis, vol. 95, no. 5, pp. 538–546, 2015, doi: 10.1016/j.tube.2015.04.012.

A. Daniyarov et al., ‘Whole genome sequence data of Mycobacterium tuberculosis XDR strain, isolated from patient in Kazakhstan’, Data Br., vol. 33, p. 106416, 2020, doi: 10.1016/j.dib.2020.106416.

I. Mokrousov et al., ‘Rapid assay for detection of the epidemiologically important central asian/russian strain of the mycobacterium tuberculosis beijing genotype’, J. Clin. Microbiol., vol. 55, no. 12, pp. 1–4, 2018, doi: 10.1128/JCM.01551-17.