EFFECT OF FOOD ON THE SYNTHESIS OF TRIMETHYLAMINE N-OXIDE IN THE BODY

Main Article Content

Authors

T.A. Sinyukova

Surgut State University, 1, Lenin St., Surgut, 628408, Khanty-Mansi Autonomous Okrug-Yugra, Russia

L.V. Kovalenko

Surgut State University, 1, Lenin St., Surgut, 628408, Khanty-Mansi Autonomous Okrug-Yugra, Russia

N.S. Kavushevskaya

Surgut State University, 1, Lenin St., Surgut, 628408, Khanty-Mansi Autonomous Okrug-Yugra, Russia

D.A. Lozhkin

Surgut State University, 1, Lenin St., Surgut, 628408, Khanty-Mansi Autonomous Okrug-Yugra, Russia

V.A. Shestakova

Surgut State University, 1, Lenin St., Surgut, 628408, Khanty-Mansi Autonomous Okrug-Yugra, Russia

Abstract

In recent years, there has been a growing interest in elucidating the relationship between gut microbiota metabolism and cardiovascular disease. Certain metabolites of the gut microbiome: certain bile acids, short-chain fatty acids and trimethylamine N-oxide, may contribute to the development and progression of cardiovascular disease. It has been shown that trimethylamine N-oxide can exacerbate cardiovascular disease through the progression of atherosclerosis and thrombotic risks, and has been shown to be correlated with other cardiometabolic diseases such as non-alcoholic fatty liver disease and chronic kidney disease. One of the many factors affecting the level of formation of trimethylamine N-oxide in the human body is nutrition. This article examines the effect of food on the production of trimethylamine N-oxide. The analysis of the data showed that an increase in the synthesis of trimethylamine N-oxide can be influenced by products with an increased content of primary substrates, the composition of the human intestinal microbiome, and the method of cooking products. It should be noted that the concentration level of the oxidized form of trimethylamine can be reduced by some biologically active compounds containing polyphenols. Studies in this area are few and contradictory, which necessitates further research on the effect of food on the metabolism of trimethylamine and its oxidized form.

Keywords

Trimethylamine, trimethylamine N-oxide, dietary effects on trimethylamine N-oxide, trimethylamine N-oxide metabolism, sources of trimethylamine

Article Details

References

Gessner A., di Giuseppe R., Koch K., Fromm M.F., Lieb W., Maas R. Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort. Clin Chem Lab Med, 2020, no. 58, pp.733-740.

Subramaniam S., Fletcher C. Trimethylamine N-oxide: Breathe new life. Br J Pharmacol, 2018, no.175, pp.1344-1353.

Al-Rubaye H., Perfetti G., Kaski J.C. The role of microbiota in cardiovascular risk: Focus on trimethylamine oxide. Curr Probl Cardiol, 2019, no. 44, pp.182-196.

Obeid R., Awwad H.M., Rabagny Y., Graeber S., Herrmann W., Geisel J. Plasma trimethylamine N-oxide concentration is associated with choline, phospholipids, and methyl metabolism. Am J Clin Nutr, 2016, no. 103, pp.703-711.

Manor O., Zubair N., Conomos M.P., Xu X., Rohwer J.E., Krafft C.E. et al. A multi-omic association study of trimethylamine N-oxide. Cell Rep, 2018, no.24, pp.935-946.

Barrea L., Annunziata G., Muscogiuri G., Laudisio D., Somma C.D., Maisto M., et al. Trimethylamine N-oxide, mediterranean diet, and nutrition in healthy, normal-weight adults: Also a matter of sex? Nutrition, 2019, no.62. pp. 7-17.

Rohrmann S., Linseisen J., Allenspach M., von Eckardstein A., Müller D. Plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a german adult population. J Nutr, 2016, no.146, pp. 283-289.

Wang Z., Levison B.S., Hazen J.E., Donahue L., Li X.M., Hazen S.L. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal Biochem, 2014, no. 455, pp. 35-40.

Cho C.E., Taesuwan S., Malysheva O.V., Bender E., Tulchinsky N.F., Yan J, et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol Nutr Food Res, 2017, vol. 61, no.1.pp. 256-259.

Miller M.J. Risk factors for cardiovascular disease: A cautionary tale of diet-microbiome interactions. J Am Coll Nutr, 2013, no. 32, pp. 75-82.

Roberts A.B., Gu X., Buffa J.A., Hurd A.G., Wang Z., Zhu W., et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med, 2018, vol. 24, no.9, pp.1407-1417.

Wang Z., Bergeron N., Levison B.S., Li X.S., Chiu S., Jia X. et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J, 2019, no. 40, pp. 583-594.

Zeisel S.H., Warrier M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Ann Rev Nutr, 2017, no. 37, pp. 157-181.

Velasquez M.T., Ramezani A., Manal A., Raj D.S. Trimethylamine N-oxide: The good, the bad and the unknown. Toxins, 2016, vol.8, no.11, pp. 326.

Papandreou C., Moré M., Bellamine A. Trimethylamine N-oxide in relation to cardiometabolic health - cause or effect? Nutrients, 2020, vol.12, no. 5, pp.1330.

Janeiro M.H., Ramírez M.J., Milagro F.I., Martínez J.A., Solas M. Implication of trimethylamine N-oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients, 2018 vol.10, no.10, pp.1398.

Fennema D., Phillips I.R., Shephard E.A. Trimethylamine and trimethylamine N-oxide, a flavin-containing monooxygenase 3 (FMO3)-mediated host-microbiome metabolic axis implicated in health and disease. Drug Metab Dispos, 2016, no. 44, pp. 1839-1850.

Chhibber-Goel J., Gaur A., Singhal V., Parakh N., Bhargava B., Sharma A. The complex metabolism of trimethylamine in humans: Endogenous and exogenous sources. Expert Rev Mol Med, 2016, no.18, e8. Crossref.

Van Hecke T., Jakobsen L.M., Vossen E., Gueraud F., De Vos F., Pierre F, et al. Short-term beef consumption promotes systemic oxidative stress, TMAO formation and inflammation in rats, and dietary fat content modulates these effects. Food Funct, 2016, no. 7. pp. 3760-3771.

Krüger R., Merz B., Rist M.J., Ferrario P.G., Bub A., Kulling S.E., Watzl B. Associations of current diet with plasma and urine TMAO in the KarMeN study: Direct and indirect contributions. Mol. Nutr. Food Res, 2017, vol. 61, no.11. Crossref 10.1002/mnfr.201700363.

Yu D., Shu X., Rivera E.S., Zhang X., Cai Q., Calcutt M.W., Xiang Y., Li H., Gao Y., Wang T.J. et al. Urinary Levels of Trimethylamine-N-Oxide and Incident Coronary Heart Disease: A Prospective Investigation Among Urban Chinese Adults. J. Am. Hear. Assoc, 2019, vol.8, no. 1, e010606. Crossref 10.1161/Jaha.118.010606.

Andraos S., Lange K., Clifford S., Jones B., Thorstensen E.B., Kerr J., Wake M., Saffery R., Burgner D.P., O’Sullivan J.M. Plasma Trimethylamine N-Oxide and Its Precursors: Population Epidemiology, Parent–Child Concordance, and Associations with Reported Dietary Intake in 11- to 12-Year-Old Children and Their Parents. Curr. Dev. Nutr, 2020, vol.4, no. 7, e:nzaa103. Crossref 10.1093/cdn/nzaa103.

De Souza R.J., Shanmuganathan M., Lamri A., Atkinson S., Becker A., Desai D., Gupta M., Mandhane P.J., Moraes T.J., Morrison K.M. et al. Maternal Diet and the Serum Metabolome in Pregnancy: Robust Dietary Biomarkers Generalizable to a Multiethnic Birth Cohort. Curr. Dev. Nutr., 2020, vol.4, no. 10, e:nzaa144. Crossref.

Hamaya R., Ivey K.L., Lee D.H., Wang M., Li J., Franke A., Sun Q., Rimm E.B. Association of diet with circulating trimethylamine-N-oxide concentration. Am. J. Clin. Nutr., 2020, no. 112, pp.1448-1455.

MacPherson M.E., Hov J.R., Ueland T., Dahl T.B., Kummen M., Otterdal K., Holm K., Berge R.K., Mollnes T.E., Trøseid M. et al. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates with Inflammation in Common Variable Immunodeficiency. Front. Immunol, 2020, no.11, pp.2217.

Yin X., Gibbons H., Rundle M., Frost G., McNulty B.A., Nugent A.P., Walton J., Flynn A., Brennan L. The Relationship between Fish Intake and Urinary Trimethylamine-N-Oxide. Mol. Nutr. Food Res. 2020, vol. 64, no. 3, e1900799. doi: 10.1002/mnfr.201900799.

Iannotti L.L., Lutter C.K., Waters W.F., Riofrío C.A.G., Malo C., Reinhart G., Palacios A., Karp C., Chapnick M., Cox K. et al. Eggs early in complementary feeding increase choline pathway biomarkers and DHA: A randomized controlled trial in Ecuador. Am. J. Clin. Nutr., 2017, no. 106, pp.1482–1489.

Hagen I.V., Helland A., Bratlie M., Midttun O., McCann A., Sveier H., Rosenlund G., Mellgren G., Ueland P.M., Gudbrandsen O.A. TMAO, creatine and 1-methylhistidine in serum and urine are potential biomarkers of cod and salmon intake: A randomised clinical trial in adults with overweight or obesity. Eur. J. Nutr., 2019, no.59, pp.2249–2259.

Gibson R., Lau C.-H.E., Loo R.L., Ebbels T.M.D., Chekmeneva E., Dyer A.R., Miura K., Ueshima H., Zhao L., Daviglus M.L. et al. The association of fish consumption and its urinary metabolites with cardiovascular risk factors: The International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Am. J. Clin. Nutr., 2019, no.11, pp.280–290.

Koeth R.A., Wang Z., Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med, 2013, no.19, pp.576–585.

Schmedes M., Balderas C., Aadland E.K., Jacques H., Lavigne C., Graff I.E., Eng O., Holthe A., Mellgren G., Young J.F. et al. The Effect of Lean-Seafood and Non-Seafood Diets on Fasting and Postprandial Serum Metabolites and Lipid Species: Results from a Randomized Crossover Intervention Study in Healthy Adults. Nutrients, 2018, no.10, pp.598.

Zhang A., Mitchell S., Smith R. Dietary Precursors of Trimethylamine in Man: A Pilot Study. Food Chem. Toxicol. 1999, no.37, pp. 515–520.

Landfald B., Valeur J., Berstad A., Raa J. Microbial trimethylamine-N-oxide as a disease marker: something fishy? Microb Ecol. Health Dis, vol. 28 , no.1, pp. 1327309. 10.1080/16512235.2017.1327309

Yancey P.H., Gerringer M.E., Drazen J.C., Rowden A.A., Jamieson A., Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. PNAS, 2014, vol. 111, no. 12, pp. 4461-4465; Crossref

Pignanelli M., Bogiatzi C., Gloor G., Allen-Vercoe E., Reid G., Urquhart B.L., Ruetz K.N., Velenosi T.J., Spence J.D. Moderate Renal Impairment and Toxic Metabolites Produced by the Intestinal Microbiome: Dietary Implications. J. Ren. Nutr., 2019, no. 29, pp. 55-64.

Tang W.H., Wang Z., Fan Y., Levison B., Hazen J.E., Donahue L.M. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J. Am. Coll. Cardiol., vol. 64, no.18, pp. 1908–1914. 10.1016/j.jacc.2014.02.617

Miller C.A., Corbin K.D., da Costa K.A., Zhang S., Zhao X., Galanko J.A. et al. Effect of egg ingestion on trimethylamine-N-oxide production in humans: A randomized, controlled, dose-response study. Am J Clin Nutr, 2014, vol.100. pp. 778-786.

Bergeron N., Williams P.T., Lamendella R., Faghihnia N., Grube A., Li X., Wang Z. et al. Diets high in resistant starch increase plasma levels of trimethylamine-N-oxide, a gut microbiome metabolite associated with CVD risk. Br J Nutr., 2016, no. 116. pp. 2020-2029.

Zhu Ch., Sawrey-Kubicek L., Bardagjy A.S, Houts H., Xinyu Tang, Sacchi R. , Randolph J.M. , Steinberg F.M. , Zivkovi A. M. Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Nutr Res., 2020, no.78, pp.36-41.

Burton K.J., Krüger R., Scherz V., Münger L.H., Picone G., Vionnet N., Bertelli C., Greub G., Capozzi F., Vergères G. Trimethylamine-N-Oxide Postprandial Response in Plasma and Urine Is Lower After Fermented Compared to Non-Fermented Dairy Consumption in Healthy Adults. Nutrients, 2020, no.12, pp.234.

Zhu C., Sawrey-Kubicek L., Bardagjy A.S., Houts H., Tang X., Sacchi R., Randolph J.M., Steinberg F.M., Zivkovic A.M. Whole egg consumption increases plasma choline and betaine without affecting TMAO levels or gut microbiome in overweight postmenopausal women. Nutr. Res. 2020, no.78, pp. 36–41.

Bielinska K., Radkowski M., Grochowska M., Perlejewski K., Huc T., Jaworska K., Motooka D., Nakamura Sh., Ufnal M. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats. Nutrition, 2018, no. 54, pp.33-39.

Griffin L.E., Djuric Z., Angiletta C.J., Mitchell C.M., Baugh M.E., Davy K.P., Neilson A.P. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct., 2019, vol.10, no.4, pp. 2138-2147.

Coutinho-Wolino K.S., Cardozo L.M., de Oliveira Leal V., Mafra D., Stockler-Pinto M.B. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? Eur J Nutr., 2021, vol.60, no.7, pp.3567-3584.

He Z. , Kwek E., Hao W., Zhu H., Liu J., Ying Ma K., Chen Z. Hawthorn fruit extract reduced trimethylamine-N-oxide (TMAO)-exacerbated atherogenesis in mice via anti-inflammation and anti-oxidation. Nutr Metab (Lond), 2021, vol.18, no.1, pp.6.

Annunziata G., Maisto M., Schisano C., Ciampaglia R., Narciso V., Tenore G., Novellino E. Effects of Grape Pomace Polyphenolic Extract (Taurisolo ®) in Reducing TMAO Serum Levels in Humans: Preliminary Results from a Randomized, Placebo-Controlled, Cross-Over Study. Nutrients, 2019, vol. 11, no.1. pp.139.

Chen M.L., Yi L., Zhang Y., Zhou X., Ran L., Yang J., Zhu J.D., Zhang Q.Y., Mi M.T. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio, 2016, vol.7, no.2, e02210-15. Crossref 10.1128/mBio.02210-15.

David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., Biddinger S.B., Dutton R.J., Turnbaugh P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, vol.505, pp.559-563.

Yin J., Liao S.X., He Y., Wang S., Xia G.H., Liu F.T. et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc., 2015, vol.4, no.11, :e002699.

Zhang Y, Wang Y, Ke B, Du J. TMAO: How gut microbiota contributes to heart failure. Transl Res., 2021, vol.228, pp. 109-125.