Main Article Content


A. Amalova

Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan

Yu. Genievskaya, Institute of Plant Biology and Biotechnology

Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
Al-Farabi Kazakh National University, Almaty,050040, Kazakhstan

S. Abugalieva

Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan

V. Chudinov

Karabalyk Agricultural Experimental Station, Kostanay region, 110908 Kazakhstan

Ye. Turuspekov

Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan


Barley is an important cereal crop in Kazakhstan, mostly used for animal feeding, malting, and the food industry. The success of barley production is dependent on the genetic resources (cultivars) available, and local breeding programs that focus on the development of competitive cultivars. One way to develop new high-yielding cultivars and improve the efficiency of breeding programs is the application of modern molecular genetic and genomic tools. One such technology is genome-wide association study (GWAS), which has been successfully applied to identify the quantitative trait loci (QTL) associated with the valuable traits. The identified single nucleotide polymorphisms (SNPs) based on GWAS can be converted to flexible and cost-effective KASP (Kompetitive Allele Specific PCR) assays and validated for use in future marker-assisted breeding projects. The purpose of this study was to genotype eleven promising six-rowed barley lines using twenty-one KASP assays associated with agronomic traits reported in previous GWAS. The genotyping results suggested that only seven out of twenty-one KASP markers were polymorphic in this group of barley accessions. The t-test output suggested that six out of nine agronomic traits were significantly associated with seven KASPs. Notably, two assays (ipbb_hv_6, ipbb_hv_108) affected both vegetation period (VP) and yield per m2 (YM2) in conditions of Northern Kazakhstan, where barley is growing in more than 80% of total crop sowing areas of the country. The application of these highly informative KASP markers can help enhance the efficiency of local breeding projects in barley.


barley, marker-assisted selection, quantitative trait loci, agronomic trait, KASP markers

Article Details


Food and Agriculture Organization of the United Nations. Available online: (accessed on 01.09. 2022)

Al-Tabbal J.A., Al-Fraihat A.H. Genetic variation, heritability, phenotypic and genotypic correlation studies for yield and yield components in promising barley genotypes. Journal of Agricultural Science, 2012, Vol. 4(3). – P. 193

Official website of the Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. URL: (accessed: 29.08.2022)

Online statistical platform Statista URL: 30.08.2022).

Almerekova S., Sariev B., Abugalieva A., Chudinov V., Sereda G., Tokhetova L., Ortaev A., Tsygankov V., Blake T., Chao S., Genievskaya Y., Abugalieva S., Turuspekov Y. Association mapping for agronomic traits in six-rowed spring barley from the USA harvested in Kazakhstan // Plos One, 2019, Vol. 14(8). – P. e0221064.

Russell J.R., Fuller J.D., Macaulay M., Hatz B.G., Jahoor A., Powell W., Waugh R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs // Theoretical and Applied Genetics, 1997, Vol. 95(4). – P. 714-722.

Fernandez M., Figueiras A., Benito C. The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical and Applied Genetics, 2002, Vol. 104(5). – P. 845-851.

Close T.J., Bhat P.R., Lonardi S., Wu Y., Rostoks N., Ramsay L., Druka A., Stein N., Svensson J.T., Wanamaker S., Bozdag S., Roose M.L., Moscou M.J., Chao S., Varshney R.K., Szűcs P., Sato K., Hayes P.M., Matthews D. E., Kleinhofs A., Muehlbauer G.J., DeYoung J., Marshall D.F., Madishetty K., Fenton R.D., Condamine P., Graner A., Waugh, R. Development and implementation of high-throughput SNP genotyping in barley. BMC genomics, 2009, Vol.10 (1). – P. 1-13.

Ledovskoy Y., Abugalieva S., & Turuspekov Y. Comparative assessment of the genetic variation in wild and cultivated barley based on SSR markers. The Asian and Australasian Journal of Plant Science and Biotechnology, 2010,Vol. 4. – P. 21-26.

Lister D.L., Jones H., Jones M.K., O'Sullivan D.M., Cockram J. Analysis of DNA polymorphism in ancient barley herbarium material: validation of the KASP SNP genotyping platform . Taxon, 2013, Vol. 62(4). – P. 779-789.

Muñoz-Amatriaín M., Cuesta-Marcos A., Endelman J.B., Comadran J., Bonman J.M., Bockelman H.E., Chao S., Russell J., Waugh R., Hayes P.M., Muehlbauer G.J. The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLos One, 2014, Vol. 9(4). – P. e94688. DOI: pmid:24732668

Bayer M.M., Rapazote-Flores P., Ganal M., Hedley P.E., Macaulay M., Plieske J., Ramsay L., Russel J., Shaw P.D., Thomas W., Waugh R. Development and evaluation of a barley 50k iSelect SNP array. Frontiers in plant science, 2017, Vol. 8. – P. 1792. DOI: 10.3389/fpls.2017.01792 pmid:29089957

Zargar S.M., Raatz B., Sonah H., Bhat J.A., Dar Z.A., Agrawal G.K., Rakwal R. Recent advances in molecular marker techniques: insight into QTL mapping, GWAS and genomic selection in plants. Journal of crop science and biotechnology, 2015, Vol. 18(5). – P. 293-308.

Genievskaya Y., Almerekova S., Sariev B., Chudinov V., Tokhetova L., Sereda G., Ortaev A., Tsygankov V., Blake T., Chao S., Sato K., Abugalieva S., Turuspekov Y. Marker-trait associations in two-rowed spring barley accessions from Kazakhstan and the USA . Plos One, 2018, Vol. 13 (10). – P. e0205421

Turuspekov Y., Baibulatova A., Yermekbayev K., Tokhetova L., Chudinov V., Sereda G., Ganal M.W, Griffiths S., Abugalieva S. GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan . BMC Plant Biology, 2017, Vol. 17 (S1). – Р. 51-61.

Amalova A., Abugalieva S., Babkenov A., Babkenova S., Turuspekov Y. Genome-wide association study of yield components in spring wheat collection harvested under two water regimes in Northern Kazakhstan . PeerJ, 2021, Vol. 9. – P. e11857.

Anuarbek S., Abugalieva S., Pecchioni N., Laidò G., Maccaferri M., Tuberosa R., Turuspekov Y. Quantitative trait loci for agronomic traits in tetraploid wheat for enhancing grain yield in Kazakhstan environments . PLoS One, 2020, Vol. 15(6). – P. e0234863. DOI: 10.1371/journal.pone.0234863

Zatybekov A., Abugalieva S., Didorenko S., Gerasimova Y., Sidorik I., Anuarbek Sh., Turuspekov Y. GWAS of agronomic traits in soybean collection included in breeding pool in Kazakhstan . BMC Plant Biology, 2017, Vol.17 (S1). – Р. 64-70.

Genievskaya Y., Turuspekov Y., Rsaliyev A., Abugalieva S. Genome-wide association mapping for resistance to leaf, stem, and yellow rusts of common wheat under field conditions of South Kazakhstan . PeerJ, 2020, Vol. 8. – P. e9820.

Genievskaya Y, Pecchioni N, Laidò G, Anuarbek S, Rsaliyev A, Chudinov V, Zatybekov A, Turuspekov Y, Abugalieva S. Genome-Wide Association Study of Leaf Rust and Stem Rust Seedling and Adult Resistances in Tetraploid Wheat Accessions Harvested in Kazakhstan . Plants, 2022, Vol. 11(15). – P.1904. DOI:10.3390/plants11151904

Turuspekov Y., Ormanbekova D., Rsaliev A., Abugalieva S. Genome-wide association study on stem rust resistance in Kazakh spring barley lines. BMC Plant Biology, 2016, Vol. 16. – P. 13-21.

ZatybekovA., Abugalieva S., Didorenko S., Rsaliyev A., Turuspekov Y. GWAS of soybean breeding collection for resistance to fungal diseases in condition of South-East and South Kazakhstan . Vavilov Journal of Genetics and Breeding (Вавиловский журнал генетики и селекции), 2018, Vol. 22(5). – P. 536-543.

Затыбеков А.К., Туруспеков Е.К., Досжанова Б.Н., Абугалиева С.И. Изучение генетического разнообразия мировой коллекции сои с использованием микросателлитных маркеров, связанных с устойчивостью к грибным болезням. Труды по прикладной ботанике, генетике и селекции, 2020, Vol. 181(3). – P. 81-90.

Gouda A. C., Warburton M. L., Djedatin G. L., Kpeki S. B., Wambugu P. W., Gnikoua K., Ndjiondjop M.N. Development and Validation of Diagnostic SNP Markers for Quality Control Genotyping in a Collection of Four Rice (Oryza) Species . Scientific Reports, 2021, Vol. 11(1). – P. 18617–18711. doi:10.1038/s41598-021-97689-3

Semagn K., Babu R., Hearne S., Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement . Molecular breeding, 2014, Vol. 33(1). – P. 1-14.

Thomson M.J. High-throughput SNP genotyping to accelerate crop improvement. Plant Breeding Biotechnology, 2014, Vol. 2. – P.195–212

Genievskaya Y., Almerekova S., Abugalieva A., Chudinov V., Abugalieva S. Genotype × environment interactions in grain quality traits and yield of barley grown in Kostanay and Almaty regions. KazNU Bulletin. Eurasian journal of ecology, 2021, Vol. 68(3) – P. 44-54 DOI: Crossref

Dellaporta S.L., Wood J., Hicks, J.B. A plant DNA minipreparation: Version II . Plant Molecular Biology Reporter, 1983,Vol. 1 (4). – P. 19–21

Patent for utility model of the Republic of Kazakhstan 6643, IPC C12Q 1/68 (2018.01), C12Q 1/6806 (2018.01). Identification method of high quality barley lines (HORDEUM VULGARE L.) using molecular markers via KASP technology/ Geniyevskaya Y.A., Almerekova S.S., Abugaliyeva S.I., Turuspekov Y.К.; applicant and patentee "Institute of Plant Biology and Biotechnology" RSE on the Right of Economic Management of SC of the MES of the Republic of Kazakhstan. – № 2021/0928.2; appl. 01.10.2021; publ. 05.11.2021, Bulletin 44. – 8 p.

Statistical Package for the Social Sciences Version 16.0 Available online: URL . (accessed on 01.08. 2022)

RStudio Team 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA Available online: URL. (accessed 11.08. 2022).

Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 2012, Vol. 28. – P. 2537-2539. DOI 10.1093/bioinformatics/ bts460