ISOLATION, IDENTIFICATION AND USE OF STRAINS OF BACTERIA OF THE GENUS BACILLUS IN A MICROBIOLOGICAL TEST FOR THE DETERMINATION OF ANTIBIOTICS IN MILK

Main Article Content

Authors

S. Aktayeva

National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kazakhstan
L.N. Gumilyov Eurasian National University, 2, Satpayev str., Nur-Sultan, 010008, Kazakhstan

A. Kiribayeva

National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kazakhstan

D. Makasheva

L.N. Gumilyov Eurasian National University, 2, Satpayev str., Nur-Sultan, 010008, Kazakhstan

M. Astrakhanov

S. Seifullin Kazakh Agro Technical University, 62, Zhenis, Nur-Sultan, 010011, Kazakhstan

A. Tursunbekova

S. Seifullin Kazakh Agro Technical University, 62, Zhenis, Nur-Sultan, 010011, Kazakhstan

B. Khassenov

National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kazakhstan

Abstract

The use of antibiotics in the treatment of livestock has increased the productivity of the meat and dairy industry. The flip side of the effectiveness of drugs of this group is the presence of side effects, which have caused concern about the widespread use of antibiotics and cause the need to control the residual content of antibacterial agents in dairy products. From soil samples collected in 7 regions of Kazakhstan, 14 microbial isolates were isolated and identified as B. licheniformis, B. sonorensis, B. cereus, B. simplex, B. thuringiensis, B. pumilis, B. mojavensis, B. subtilis, B. atrophaeus, B. paralicheniformis. Sensitivity testing of the isolated strains showed that the strains were susceptible to 13 antibiotics belonging to lincosamide, ansamycin, quinolone, macrolide, fluoroquinolone, tetracycline, nitrobenzene, aminoglycoside, glycopeptide and beta-lactam antibiotics. The proteolytic strain Bacillus licheniformis T7 seems promising as a test culture. It is highly sensitive to antibiotics, grows rapidly on a variety of nutrient media, is alkaline and spore-forming and can be cultured at 37-55°C. The peculiarity of the strain to change the pH of the medium from 5.0 to 7.0 and above makes it possible to use bromcresol purple as a growth-detecting dye. This has been shown in experiments using antibiotic milk samples on LB agar and LB broth pH 5.0. In the absence of growth-inhibiting antibiotics, the culture of B. licheniformis T7 grows vigorously, which causes a pH shift to 7.99 and causes the color of bromocresol purple to change from yellow to purple. The results showed promise for the strain Bacillus licheniformis T7 to be used as a bacterial culture in the development of a microbiological test for the detection of antibiotics in milk.

Keywords

milk, antibiotic, bacteria, Bacillus licheniformis, sensitivity

Article Details

References

Zaffiri L., Gardner J., Toledo-Pereyra L. H. History of antibiotics. From salvarsan to cephalosporins // J Invest Surg. ‒ 2012. ‒ T. 25, № 2. ‒ C. 67-77.

Althaus R. L., Molina M. P., Rodriguez M., Fernandez N. Detection limits of beta-lactam antibiotics in ewe milk by penzym enzymatic test // J Food Prot. ‒ 2001. ‒ T. 64, № 11. ‒ C. 1844-7.

Kuipers A., Koops W. J., Wemmenhove H. Antibiotic use in dairy herds in the Netherlands from 2005 to 2012 // J Dairy Sci. ‒ 2016. ‒ T. 99, № 2. ‒ C. 1632-1648.

Lees P., Toutain P.-L. Chemical Analysis of Antibiotic Residues in Food, 2011. ‒ C. 61-109.

Phillips I., Casewell M., Cox T., De Groot B., Friis C., Jones R., Nightingale C., Preston R., Waddell J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data // J Antimicrob Chemother. ‒ 2004. ‒ T. 53, № 1. ‒ C. 28-52.

Johnson C. C., Ownby D. R., Alford S. H., Havstad S. L., Williams L. K., Zoratti E. M., Peterson E. L., Joseph C. L. Antibiotic exposure in early infancy and risk for childhood atopy // J Allergy Clin Immunol. ‒ 2005. ‒ T. 115, № 6. ‒ C. 1218-24.

Ajslev T. A., Andersen C. S., Gamborg M., Sørensen T. I., Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics // Int J Obes (Lond). ‒ 2011. ‒ T. 35, № 4. ‒ C. 522-9.

Li J. H., Yousif M. H., Li Z. Q., Wu Z. H., Li S. L., Yang H. J., Wang Y. J., Cao Z. J. Effects of antibiotic residues in milk on growth, ruminal fermentation, and microbial community of preweaning dairy calves // J Dairy Sci. ‒ 2019. ‒ T. 102, № 3. ‒ C. 2298-2307.

Seymour E. H., Jones G. M., McGilliard M. L. Persistence of residues in milk following antibiotic treatment of dairy cattle // J Dairy Sci. ‒ 1988. ‒ T. 71, № 8. ‒ C. 2292-6.

Martins T., Santos A. F. S., Miranda M., Motta T., Ambrosio L., Pozzi C., Arcaro J. Persistence of gentamicin residues in cow milk after intramammary treatment // Revue de Medecine Veterinaire. ‒ 2014. ‒ T. 165. ‒ C. 62-67.

Kumar N., Vishweswaraiah R., Kumar A., Haldar L., Khan A., Rane S., Malik R. Spore germination based assay for monitoring antibiotic residues in milk at dairy farm // World journal of microbiology & biotechnology. ‒ 2012. ‒ T. 28. ‒ C. 2559-66.

Zhou J., Xue X., Li Y., Zhang J., Chen F., Wu L., Chen L., Zhao J. Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and two-step solid phase extraction // Food Chemistry. ‒ 2009. ‒ T. 115. ‒ C. 1074-1080.

Azzouz A., Jurado-Sánchez B., Souhail B., Ballesteros E. Simultaneous determination of 20 pharmacologically active substances in cow's milk, goat's milk, and human breast milk by gas chromatography-mass spectrometry // J Agric Food Chem. ‒ 2011. ‒ T. 59, № 9. ‒ C. 5125-32.

Grzelak E., Irena M., Choma I. Determination of Cefacetrile and Cefuroxime Residues in Milk by Thin-Layer Chromatography // Journal of Liquid Chromatography & Related Technologies®. ‒ 2009. ‒ T. 32. ‒ C. 2043-2049.

Blasco C., Corcia A., Pico Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography–tandem mass spectrometry // Food Chemistry. ‒ 2009. ‒ T. 116. ‒ C. 1005-1012.

Mitchell J. M., Griffiths M. W., McEwen S. A., McNab W. B., Yee A. J. Antimicrobial drug residues in milk and meat: causes, concerns, prevalence, regulations, tests, and test performance // J Food Prot. ‒ 1998. ‒ T. 61, № 6. ‒ C. 742-56.

Matuschek E., Brown D. F., Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories // Clin Microbiol Infect. ‒ 2014. ‒ T. 20, № 4. ‒ C. O255-66.

Wu Q., Zhu Q., Liu Y., Shabbir M. A. B., Sattar A., Peng D., Tao Y., Chen D., Wang Y., Yuan Z. A microbiological inhibition method for the rapid, broad-spectrum, and high-throughput screening of 34 antibiotic residues in milk // J Dairy Sci. ‒ 2019. ‒ T. 102, № 12. ‒ C. 10825-10837.

Molina M. P., Althaus R., Molina A., Fernández N. Antimicrobial agent detection in ewes’ milk by the microbial inhibitor test brilliant black reduction test-BRT AİM® // International Dairy Journal. ‒ 2003. ‒ T. 13. ‒ C. 821-826.

Nagel O. G., Beltrán M. C., Molina M. P., Althaus R. Novel microbiological system for antibiotic detection in ovine milk // Small Ruminant Research. ‒ 2012. ‒ T. 102. ‒ C. 26-31.