Distribution and genetic features of the causative agent of Alaria alata in wild carnivores of the steppe and forest-steppe zones of Kazakhstan

Main Article Content

Authors

A.M. Smagulova

Saken Seifullin Kazakh Agrotechnical University, 62 Zhenis avenue, Nur-Sultan 010011, Kazakhstan

R.S. Uakhit

Saken Seifullin Kazakh Agrotechnical University, 62 Zhenis avenue, Nur-Sultan 010011, Kazakhstan

L.А. Lider

Saken Seifullin Kazakh Agrotechnical University, 62 Zhenis avenue, Nur-Sultan 010011, Kazakhstan

А.S. Lyalchenko

LLC EcoBioGen,  28/104 Bogenbay batyr avenue, Nur-Sultan 010011, Kazakhstan

V.S. Kiyan

Saken Seifullin Kazakh Agrotechnical University, 62 Zhenis avenue, Nur-Sultan 010011, Kazakhstan
National Center of Biotechnology, 13/5 Qorghalzhyn Hwy, Nur-Sultan 010011, Kazakhstan

Abstract

This article presents data on the study of the Alaria spp. pathogen isolated from wild carnivores (corsacs, foxes, wolves) caught in the territory of Karaganda, Kostanay, Akmola, and East Kazakhstan regions in the period from 2019 to 2022. As a result of the autopsy of wild animals, a collection of Alaria spp. was collected, the intensity of invasion varied from 1 to 1489 samples/animal, and the prevalence of invasion ranged from 10 to 36.11%. The primary taxonomic affiliation of the pathogen was carried out using determinants. Genetic identification was carried out by amplification of a section of the internal transcribed spacer 2 (ITS2) marker gene. The resulting 557 bp amplicons. sequenced using the Sanger method. The nucleotide sequences were deposited in the international GenBank database under accession numbers: from the fox - OM630451, ON248128, ON248130, from the corsac - OM630460, ON248043, ON248044, ON248045, from the wolf - ON358106. Bioinformatics analysis to build a phylogeny showed that the samples of Alaria alata studied by us were combined into a separate cluster by identity, which ranged from 90-98%.

Keywords

wild carnivores, Alaria alata, intensity, extensiveness, ITS2, genetic identification

Article Details

References

Möhl K, Große K, Hammedy A, Wüste T, Kabelitz P, Lücker E (2009) Biology of Alaria spp. and human exposition risk to Alaria mesocercariae - a review. Parasitol Res 105:1–15

Takeuchi-Storm N., Al-Sabi M.N.S., Thomsborg S.M., Enemark H.L. Alaria alata Mesocercariae among Feral Cats and Badgers, Denmark. Emerg. Infect. Dis. 2015;21:1872–1874. doi: 10.3201/eid2010.141817.

Chmurzyńska E., Różycki M., Bilska-Zając E., Karamon J., Cencek T. Alaria alata Potential threat for humans, prevalence and diagnostic measures. Vet. Life. 2013;88:780–784.

Wasiluk A. Alaria alata infection—Threating yet rarely detected trematodiasis. J. Lab. Diag. 2013;49:33–37

Riehn K., Hamedy A., Grosse K., Wüste T., Lücker E. Alaria alata in wild boars (Sus scrofa, Linnaeus, 1758) in the eastern parts of Germany. Parasitol. Res. 2012;111:1857–1861. doi: 10.1007/s00436-012-2936-4.

Kazakbaev K.M. Gel'mintozy sobak i mery bor'by s nimi v ZHambylskoj oblasti. - Almaty: ZHaniya-Poligraf, 2005. - 28 s.

Kazakbaev K.M., Menlibekova A.G. Gel'minty priotarnyh i dvorovyh sobak ZHambyl'skoj oblasti // Metodologiya, teoriya i praktika sovremennoj biologii: sb. mater. IV mezhdunar. nauch. –prakt. konf. studentov i molodyh uchenyh. - Kostanaj, 2019. – S. 28-33.

Lider L.A. Osobennosti epizooticheskoj situacii gel'mintov sobak i ih dezinvaziya v severnom regione Kazahstana. -Almaty, 2003. – 27 c.

Riehn, K., Hamedy, A., Alter, T., & Lücker, E. (2011). Development of a PCR approach for differentiation of Alaria spp. mesocercariae. Parasitology Research, 108(5), 1327–1332. doi:10.1007/s00436-010-2240-0

Kästner, C.; Bahn, P.; Schönfelder, R.; Ozolin, a, Z.; Alksne, L.; Richter, M.H.; Deksne, G.; Mayer-Scholl, A.; Johne, A. Development of a Novel Method for Identification of Alaria alata Mesocercariae by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Microorganisms 2021, 9, 1664. Crossref microorganisms9081664

Deplazes, P., Eckert, J. (1996) Diagnosis of the Echinococcus multilocularis infection in final hosts. Appl Parasitol. 37(4):245-52. PMID: 9060171.

Bekenova A, Smagulova A, Katokhin A, Borovikov S, Kiyan V (2020). Molecular differential diagnosis between Opisthorchis felineus and Metorchis bilis. Adv. Anim. Vet. Sci. 8(s3): 27-32..

Clement, M., Posada, D., Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol., 9(10):1657-9. doi: 10.1046/j.1365-294x.2000.01020.x.

Saitou, N., Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol., 4(4):406-25. doi: 10.1093/oxfordjournals.molbev.a040454.

Pearson J.C. Studies on the life cycles and morphology of the larval stages of Alaria arisaemoides Augustine and Uribe, 1927 and Alaria canis La Rue and Fallis, 1936 (trematode: Diplostomidae) Can. J. Zool. 1956;34:295–387. doi: 10.1139/z56-043.

Tamura K. and Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526.

Tamura, K., Stecher, G., Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol., 38(7):3022-3027. doi: 10.1093/molbev/msab120.