NUCLEOSIDE ANALOG FAVIPIRAVIR IS A POOR INHIBITOR AGAINST THE SARS-COV-2 VIRUS IN CELL CULTURE, BUT FAVIPIRAVIR IS HIGHLY ACTIVE AGAINST VENEZUELAN EQUINE ENCEPHALITIS VIRUS

Main Article Content

Authors

G.M. Zauatbayeva

National Center for Biotechnology, 13/5, Korgalzhyn hwy, Nur-Sultan, 010000, Kazakhstan

L.R. Syzdykova

National Center for Biotechnology, 13/5, Korgalzhyn hwy, Nur-Sultan, 010000, Kazakhstan

V.V. Keyer

National Center for Biotechnology, 13/5, Korgalzhyn hwy, Nur-Sultan, 010000, Kazakhstan

A.V. Shustov

National Center for Biotechnology, 13/5, Korgalzhyn hwy, Nur-Sultan, 010000, Kazakhstan

A.Z. Abilmagzhanov

D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, 142, Kunaev str., Almaty, 050000, Kazakhstan

M.Zh. Zhurynov

D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry, 142, Kunaev str., Almaty, 050000, Kazakhstan

Abstract

The SARS-CoV-2 pandemic has been the largest epidemiological event in the current century, however, it was not the first epidemic with a large tally in the 21st century, nor it will be the last. The majority of pathogens which have caused large epidemics in the 21st century (avian influenza, pandemic influenza, MERS, Ebola, etc.), including the SARS-CoV-2 itself, are RNA-containing viruses. The biological nature of the pathogen which will cause the future epidemic is difficult to predict, but with it highly probable will be an RNA-containing virus. To prepare for future epidemics, drug repurposing is a promising approach. The drugs repurposing against RNA viruses is facilitated by pathogens’ features such that RNA-dependent RNA polymerases have the ability to incorporate modified nucleotides into growing RNA strands; and in the majority RNA viruses, their replicases do not have the editing capacity.

In this work, we measured the ability of two registered antiviral drugs with different mechanisms of antiviral action - Favipiravir and Cycloferon - to suppress the replication of two unrelated viruses in Vero E6 cell culture. We measured the antiviral activity against the coronavirus SARS-CoV-2 and Venezuelan equine encephalitis virus (VEEV).

Favipiravir was not an effective inhibitor of SARS-CoV-2, because of the high half-maximal effective concentration, EC50 > 6.67 mg/ml. But Favipiravir actively suppressed the replication of the VEEV virus in the pharmacological concentration range.

Cycloferon appeared to be a prominent inhibitor of the SARS-CoV-2 cotonavirus, demonstrating EC50 = 0.066 mg/ml. However, Cycloferon was ineffective against VEEV.

Such differences in the activity of two drugs against two unrelated RNA-viruses are probably explained by different mechanisms of the antiviral action.

Keywords

Favipiravir, Cycloferon, antiviral activity, SARS-CoV-2

Article Details

References

Bai Y., Wang Q., Liu M., Bian L., Liu J., Gao F., Mao Q., Wang Z., Wu X., Xu M., Liang Z. The next major emergent infectious disease: reflections on vaccine emergency development strategies. Expert Rev Vaccines, 2022, vol. 21, no. 4, pp. 471-481. 35080441. Crossref

Huchting J. Targeting viral genome synthesis as broad-spectrum approach against RNA virus infections. Antivir Chem Chemother, 2020, vol. 28, 33297724. Crossref

Smith E. C. The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates. PLoS Pathog, 2017, vol. 13, no. 4, 28448634. Crossref

Elena S. F., Sanjuán R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J Virol, 2005, vol. 79, no. 18, pp. 11555-11558. 16140732. Crossref

Robson F., Khan K. S., Le, T. K., Paris, C., Demirbag, S., Barfuss, P., Rocchi, P., Ng, W. L. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol Cell, 2020, vol. 80, no. 6, pp. 1136-1138. 32853546. Crossref

Kirchdoerfer, R. N., Ward, A. B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat Commun, 2019, vol. 10, no. 1, pp. 2342. 31138817. Crossref

Samieegohar M., Weaver J. L., Howard K. E., Chaturbedi A., Mann J., Han X., Zirkle J., Arabidarrehdor G., Rouse R., Florian J., Strauss D. G., Li Z. Calibration and Validation of a Mechanistic COVID-19 Model for Translational Quantitative Systems Pharmacology - A Proof-of-Concept Model Development for Remdesivir. Clin Pharmacol Ther, 2022, 35694844. Crossref

Ivashchenko,A. A., Dmitriev K. A., Vostokova N. V., Azarova V. N., Blinow A. A., Egorova A. N., Gordeev I. G., Ilin A. P., Karapetian R. N., Kravchenko D. V., Lomakin N. V., Merkulova, E. A., Papazova N. A., Pavlikova E. P., Savchuk N. AVIFAVIR for Treatment of Patients With Moderate Coronavirus Disease 2019 (COVID-19): Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. Clin Infect Dis, 2021, vol. 73, no. 3, pp. 531-534. 32770240. Crossref

Hayden F. G., Lenk R. P., Stonis L., Oldham-Creamer C., Kang L. L., Epstein C. Favipiravir Treatment of Uncomplicated Influenza in Adults: Results of Two Phase 3, Randomized, Double-Blind, Placebo-Controlled Trials. J Infect Dis, 2022, 35639525. Crossref

Guzmán-Terán C., Calderón-Rangel A., Rodriguez-Morales A., Mattar S. Venezuelan equine encephalitis virus: the problem is not over for tropical America. Ann Clin Microbiol Antimicrob, 2020, vol. 19, no. 1, pp. 19. 32429942. Crossref

Stalinskaya A., Martynenko N., Shulgau Z., Shustov A., Keyer V., Kulakov I. Synthesis and Antiviral Properties against SARS-CoV-2 of Epoxybenzooxocino[4,3-b]Pyridine Derivatives. Molecules, 2022, vol. 27, pp. 3701. Crossref

Keyer V., Syzdykova L., Zauatbayeva G., Zhulikeyeva A., Ramanculov Y., Shustov A. V., Shulgau Z. Tilorone and Cridanimod Protect Mice and Show Antiviral Activity in Rats despite Absence of the Interferon-Inducing Effect in Rats. Pharmaceuticals (Basel), 2022, vol. 15, no. 5. 35631443. Crossref

Postnikova E., Cong Y., DeWald L. E., Dyall J., Yu S., Hart B. J., Zhou H., Gross R., Logue J., Cai Y., Deiuliis N., Michelotti J., Honko A. N., Bennett R. S., Holbrook M. R., Olinger G. G., Hensley L. E., Jahrling P. B. Testing therapeutics in cell-based assays: Factors that influence the apparent potency of drugs. PLoS One, 2018, vol. 13, no. 3. 29566079. Crossref

Malin J. J., Suárez I., Priesner V., Fätkenheuer G., Rybniker J. Remdesivir against COVID-19 and Other Viral Diseases. Clin Microbiol Rev, 2020, vol. 34, no. 1. 33055231. Crossref

Phizackerley D. Three more points about Paxlovid for covid-19. BMJ, 2022, vol. 377. 35672048. Crossref

Finberg R. W., Ashraf M., Julg B., Ayoade F., Marathe J. G., Issa N. C., Wang J. P., Jaijakul S., Baden L. R., Epstein C. US201 Study: A Phase 2, Randomized Proof-of-Concept Trial of Favipiravir for the Treatment of COVID-19. Open Forum Infect Dis, 2021, vol. 8, no. 12. 34888401. Crossref

Furuta Y., Komeno T., Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci, 2017, vol. 93, no. 7, pp. 449-463. 28769016. Crossref

Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020, vol. 30, no. 3, pp. 269-271. 32020029. Crossref

Shannon A., Selisko B., Le N. T., Huchting J., Touret F., Piorkowski G., Fattorini V., Ferron F., Decroly E., Meier C., Coutard B., Peersen O., Canard B. Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat Commun, 2020, vol. 11, no. 1, pp. 4682. 32943628. Crossref

Jeon S., Ko M., Lee J., Choi I., Byun S. Y., Park S., Shum D., Kim S. Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs. Antimicrob Agents Chemother, 2020, vol. 64, no. 7. 32366720. Crossref

AlQahtani M., Kumar N., Aljawder D., Abdulrahman A., Alnashaba F., Fayyad M. A., Alshaikh F., Alsahaf F., Saeed S., Almahroos A., Abdulrahim Z., Otoom S., Atkin S. L. Randomized controlled trial of favipiravir, hydroxychloroquine, and standard care in patients with mild/moderate COVID-19 disease. Sci Rep 2022, vol. 12, no. 1, pp. 4925. 35322077. Crossref

Ershov F. I., Kovalenko A. L., Garashchenko T. I., Sel'kova E. P., Botvin'eva V. V., Zhekalov A. N., Petlenko S. V., Bol'bot I. U., Romantsov M. G. Cycloferon a new domestic preparation for the prophylaxis of influenza and other acute respiratory viral infections. Zh Mikrobiol Epidemiol Immunobiol, 2004, vol. 6, pp. 47-51. 15636140.

Sologub T. V., Shul'diakov A. A., Romantsov M. G., Zhekalov A. N., Petlenko S. V., Erofeeva M. K., Maksakova V. L., Isakov V. A., Zarubaev V. V., Gatsan V. V., Kovalenko A. L. Cycloferon, as an agent in the therapy and urgent prophylaxis of influenza and acute respiratory tract viral infection (multicentre randomized controlled comparative study). Antibiot Khimioter, 2009, vol. 54, no. 7-8, pp. 30-2, pp. 34-6. 20201401

Zhao L., Zhong W. Mechanism of action of favipiravir against SARS-CoV-2: Mutagenesis or chain termination. Innovation (Camb), 2021, vol. 2, no. 4, pp. 100165. 34518821. Crossref

Wang Y., Yuan C., Xu X., Chong T. H., Zhang L., Cheung P. P., Huang X. The mechanism of action of T-705 as a unique delayed chain terminator on influenza viral polymerase transcription. Biophys Chem, 2021, vol. 277, pp. 106652. 34237555. Crossref

Borrego B., de Ávila A. I., Domingo E., Brun A. Lethal Mutagenesis of Rift Valley Fever Virus Induced by Favipiravir. Antimicrob Agents Chemother, 2019, vol. 63, no. 8. 31085519. Crossref