POSSIBILITIES OF USING MEDICINES AND BIOLOGICALLY ACTIVE SUBSTANCES AS CORRECTIVES FOR THE FORMATION OF PULMONARY FIBROSIS DURING SARS-COV-2 INFECTION AND IN THE POST-COVID PERIOD

Main Article Content

Authors

Z.T. Shulgau

Republican State Enterprise “National Center for Biotechnology”, Kurgalzhynskoye road 13/5, Nur-Sultan, 010000, Kazakhstan

Y.K. Kamyshanskiy

Republican State Enterprise “National Center for Biotechnology”, Kurgalzhynskoye road 13/5, Nur-Sultan, 010000, Kazakhstan

A.Y. Gulyayev

Republican State Enterprise “National Center for Biotechnology”, Kurgalzhynskoye road 13/5, Nur-Sultan, 010000, Kazakhstan

Abstract

A systematic review of the literature on the pathophysiology of fibrosis in interstitial lung diseases was carried out. The results of clinical studies of the effectiveness of antifibrotic drugs are summarized. Particular attention is paid to the development of fibrosis associated with Covid-19 infection. The results of the study of the most promising drugs that prevent the development of fibrosis in this pathology are described. The prospect of developing drug therapy based on plant polyphenols is emphasized.

Keywords

Pulmonary fibrosis, pathogenesis of pulmonary fibrosis, antifibrotic drugs

Article Details

References

Hama Amin B.J., Kakamad F.H., Ahmed G.S., Ahmed S.F., Abdulla B.A., mohammed S.H., Mikael T.M., et al. Post covid-19 pulmonary fibrosis; a meta-analysis study. Annals of Medicine and Surgery, 2022, vol. 77, pp. 103590.

Ahmed O.F., kakamad F.H., Hama Amin B.J., Abdullah B.A., Hassan M.N., Salih R.Q., Mohammed S.H., et al. Post covid-19 pulmonary complications; a single center experience. Annals of Medicine and Surgery, 2021, vol. 72, pp. 103052.

Marvisi M., Ferrozzi F., Balzarini L., Mancini C., Ramponi S., Uccelli M. First report on clinical and radiological features of COVID-19 pneumonitis in a Caucasian population: Factors predicting fibrotic evolution. International Journal of Infectious Diseases, 2020, vol. 99, pp. 485–488.

McGroder C.F., Zhang D., Choudhury M.A., Salvatore M.M., D'Souza B.M., Hoffman E.A., Wei Y., et al. Pulmonary fibrosis 4 months after covid-19 is associated with severity of illness and blood leucocyte telomere length. Thorax, 2021, vol. 76, no. 12, pp. 1242–1245.

Han X., Fan Y., Alwalid O., Li N., Jia X., Yuan M., Li Y., et al. Six-month follow-up chest CT findings after severe Covid-19 pneumonia. Radiology, 2021, vol. 299, no. 1. Crossref

Zou J.-N., Sun L., Wang B.-R., Zou Y., Xu S., Ding Y.-J., Shen L.-J., et al. The characteristics and evolution of pulmonary fibrosis in COVID-19 patients as assessed by AI-Assisted chest hrct. PLOS ONE, 2021, vol. 16, no. 3. Crossref

Stawicki S.P., Jeanmonod R., Miller A.C., Paladino L., Gaieski D.F., Yaffee A.Q., De Wulf A., et al. The 2019–2020 novel coronavirus (severe acute respiratory syndrome coronavirus 2) pandemic: A Joint American College of Academic International Medicine-World Academic Council of Emergency Medicine Multidisciplinary covid-19 Working Group Consensus Paper. Journal of Global Infectious Diseases, 2020, vol. 12, no. 2, pp. 47–93.

Konopka K.E., Nguyen T., Jentzen J.M., Rayes O., Schmidt C.J., Wilson A.M., Farver C.F., et al. Diffuse alveolar damage (dad) resulting from coronavirus disease 2019 infection is morphologically indistinguishable from other causes of dad. Histopathology, 2020, vol. 77, no. 4, pp. 570–578.

Menter T., Haslbauer J.D., Nienhold R., Savic S., Hopfer H., Deigendesch N., Frank S., et al. Postmortem examination of COVID‐19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology, 2020, vol. 77, no. 2, pp. 198–209.

Lax S.F., Skok K., Zechner P., Kessler H.H., Kaufmann N., Koelblinger C., Vander K., et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome. Annals of Internal Medicine, 2020, vol. 173, no. 5, pp. 350–361.

Fox S.E., Akmatbekov A., Harbert J.L., Li G., Quincy Brown J., Vander Heide R.S. Pulmonary and cardiac pathology in African American patients with covid-19: An autopsy series from New Orleans. The Lancet Respiratory Medicine, 2020, vol. 8, no. 7, pp. 681–686.

Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine, 2020, vol. 8, no. 4, pp. 420–422.

Rapkiewicz A.V., Mai X., Carsons S.E., Pittaluga S., Kleiner D.E., Berger J.S., Thomas S., et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in covid-19: A case series. EClinicalMedicine, 2020, vol. 24, pp. 100434.

Duarte‐Neto A.N., Monteiro R.A., Silva L.F., Malheiros D.M., Oliveira E.P., Theodoro‐Filho J., Pinho J.R., et al. Pulmonary and systemic involvement in Covid‐19 patients assessed with ultrasound‐guided minimally invasive autopsy. Histopathology, 2020, vol. 77, no. 2, pp. 186–197.

Tian S., Xiong Y., Liu H., Niu L., Guo J., Liao M., Xiao S.-Y. Pathological study of the 2019 novel Coronavirus Disease (COVID-19) through Postmortem Core Biopsies. Modern Pathology, 2020, vol. 33, no. 6, pp. 1007–1014.

Buja L.M., Wolf D.A., Zhao B., Akkanti B., McDonald M., Lelenwa L., Reilly N., et al. The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): Report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities. Cardiovascular Pathology, 2020, vol. 48, pp. 107233.

Borczuk A.C., Salvatore S.P., Seshan S.V., Patel S.S., Bussel J.B., Mostyka M., Elsoukkary S., et al. Covid-19 pulmonary pathology: A multi-institutional autopsy cohort from Italy and New York City. Modern Pathology, 2020, vol. 33, no. 11, pp. 2156–2168.

Pernazza A., Mancini M., Rullo E., Bassi M., De Giacomo T., Rocca C.D., d’Amati G. Early histologic findings of pulmonary SARS-COV-2 infection detected in a surgical specimen. Virchows Archiv, 2020, vol. 477, no. 5, pp. 743–748.

Wichmann D., Sperhake J.-P., Lütgehetmann M., Steurer S., Edler C., Heinemann A., Heinrich F., et al. Autopsy findings and venous thromboembolism in patients with covid-19. Annals of Internal Medicine, 2020, vol. 173, no. 4, pp. 268–277.

Carsana L., Sonzogni A., Nasr A., Rossi R.S., Pellegrinelli A., Zerbi P., Rech R., et al. Pulmonary post-mortem findings in a series of covid-19 cases from Northern Italy: A two-centre descriptive study. The Lancet Infectious Diseases, 2020, vol. 20, no. 10, pp. 1135–1140.

Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. Covid-19 autopsies, Oklahoma USA. American Journal of Clinical Pathology, 2020, vol. 153, no. 6, pp. 725–733.

Sauter J.L., Baine M.K., Butnor K.J., Buonocore D.J., Chang J.C., Jungbluth A.A., Szabolcs M.J., et al. Insights into pathogenesis of fatal Covid‐19 pneumonia from histopathology with immunohistochemical and viral RNA studies. Histopathology, 2020, vol. 77, no. 6, pp. 915–925.

Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.-Y. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. Journal of Thoracic Oncology, 2020, vol. 15, no. 5, pp. 700–704.

Youd E., Moore L. Covid-19 autopsy in people who died in community settings: The first series. Journal of Clinical Pathology, 2020, vol. 73, no. 12, pp. 840–844.

COVID-19 Autopsy. Electronic address: anapat.hrc@salud.madrid.org. The first COVID-19 autopsy in Spain performed during the early stages of the pandemic. Revista Española De Patología, 2020, vol. 53, no. 3, pp. 182–187. Crossref

Bösmüller H., Traxler S., Bitzer M., Häberle H., Raiser W., Nann D., Frauenfeld L., et al. The evolution of pulmonary pathology in fatal covid-19 disease: An autopsy study with Clinical Correlation. Virchows Archiv, 2020, vol. 477, no. 3, pp. 349–357.

Yan L., Mir M., Sanchez P., Beg M., Peters J., Enriquez O., Gilbert A. Covid-19 in a Hispanic woman. Archives of Pathology & Laboratory Medicine, 2020, vol. 144, no. 9, pp. 1041–1047.

Lechowicz K., Drożdżal S., Machaj F., Rosik J., Szostak B., Zegan-Barańska M., Biernawska J., et al. Covid-19: The potential treatment of pulmonary fibrosis associated with SARS-COV-2 infection. Journal of Clinical Medicine, 2020, vol. 9, no. 6, pp. 1917.

Yang J., Pan X., Wang L., Yu G. Alveolar cells under mechanical stressed niche: Critical contributors to pulmonary fibrosis. Molecular Medicine, 2020, vol. 26, no. 1. Crossref

Rouby J.J., Lherm T., Martin de Lassale E., Poète P., Bodin L., Finet J.F., Callard P., et al. Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Medicine, 1993, vol. 19, no. 7, pp. 383–389.

Rabaan A. A., Al-Ahmed S. H., Haque S., Sah R., Tiwari R., Malik Y. S., Dhama K., et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Le infezioni in medicina, 2020, vol. 28, no. 2, pp. 174–184.

Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 2020, vol. 395, no. 10224, pp. 565–574.

Hu B., Guo H., Zhou P., Shi Z.-L. Characteristics of SARS-COV-2 and COVID-19. Nature Reviews Microbiology, 2020, vol. 19, no. 3, pp. 141–154.

Antonio G.E., Wong K.T., Hui D.S., Wu A., Lee N., Yuen E.H., Leung C.B., et al. Thin-section CT in patients with severe acute respiratory syndrome following hospital discharge: Preliminary experience. Radiology, 2003, vol. 228, no. 3, pp. 810–815.

Das K.M., Lee E.Y., Singh R., Enani M.A., Al Dossari K., Van Gorkom K., Larsson S.G., et al. Follow-up chest radiographic findings in patients with MERS-COV after recovery. Indian Journal of Radiology and Imaging, 2017, vol. 27, no. 03, pp. 342–349.

Spagnolo P., Balestro E., Aliberti S., Cocconcelli E., Biondini D., Casa G.D., Sverzellati N., et al. Pulmonary fibrosis secondary to covid-19: A call to arms?. The Lancet Respiratory Medicine, 2020, vol. 8, no. 8, pp. 750–752.

Das K.M., Lee E.Y., Jawder S.E., Enani M.A., Singh R., Skakni L., Al-Nakshabandi N., et al. Acute middle east respiratory syndrome coronavirus: Temporal lung changes observed on the chest radiographs of 55 patients. American Journal of Roentgenology, 2015, vol. 205, no. 3. Crossref

Chan K.S., Zheng J.P., Mok Y.W., Li Y.M., Liu Y.-N., Chu C.M., Ip M.S. SARS: Prognosis, outcome and sequelae. Respirology, 2003, vol. 8, no. s1. Crossref

Hui D.S. Impact of severe acute respiratory syndrome (SARS) on pulmonary function, functional capacity and quality of life in a cohort of survivors. Thorax, 2005, vol. 60, no. 5, pp. 401–409.

Ngai J.C., Ko F.W., Ng S.S., To K.-W., Tong M., Hui D.S. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology, 2010, vol. 15, no. 3, pp. 543–550.

Zhang P., Li J., Liu H., Han N., Ju J., Kou Y., Chen L., et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: A 15-year follow-up from a prospective cohort study. Bone Research, 2020, vol. 8, no. 1. Crossref

Xie L., Liu Y., Fan B., Xiao Y., Tian Q., Chen L., Zhao H., et al. Dynamic changes of serum SARS-coronavirus IGG, pulmonary function and radiography in patients recovering from SARS after hospital discharge. Respiratory Research, 2005, vol. 6, no. 1. Crossref

Xie L., Liu Y., Xiao Y., Tian Q., Fan B., Zhao H., Chen W. Follow-up study on pulmonary function and Lung radiographic changes in rehabilitating severe acute respiratory syndrome patients after discharge. Chest, 2005, vol. 127, no. 6, pp. 2119–2124.

Britto C.J., Brady V., Lee S., Dela Cruz C.S. Respiratory viral infections in chronic lung diseases. Clinics in Chest Medicine, 2017, vol. 38, no. 1, pp. 87–96.

Crothers K., Huang L., Goulet J.L., Goetz M.B., Brown S.T., Rodriguez-Barradas M.C., Oursler K.K., et al. HIV infection and risk for incident pulmonary diseases in the combination antiretroviral therapy era. American Journal of Respiratory and Critical Care Medicine, 2011, vol. 183, no. 3, pp. 388–395.

Yamashiro T., Kamiya H., Miyara T., Gibo S., Ogawa K., Akamine T., Moromizato H., et al. CT scans of the chest in carriers of human T-cell lymphotropic virus type 1. Academic Radiology, 2012, vol. 19, no. 8, pp. 952–957.

To K.-F., Chan P.K.S., Chan K.-F., Lee W.-K., Lam W.-Y., Wong K.-F., Tang N.L.S., et al. Pathology of fatal human infection associated with avian influenza A H5N1 virus. Journal of Medical Virology, 2001, vol. 63, no. 3, pp. 242–246.

Hwang D.M., Chamberlain D.W., Poutanen S.M., Low D.E., Asa S.L., Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Modern Pathology, 2004, vol. 18, no. 1, pp. 1–10.

Gu J., Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. The American Journal of Pathology, 2007, vol. 170, no. 4, pp. 1136–1147.

Qiao J., Zhang M., Bi J., Wang X., Deng G., He G., Luan Z., et al. Pulmonary fibrosis induced by H5N1 viral infection in mice. Respiratory Research, 2009, vol. 10, no. 1. Crossref

Jolly L., Stavrou A., Vanderstoken G., Meliopoulos V.A., Habgood A., Tatler A.L., Porte J., et al. Influenza promotes collagen deposition via αvβ6 integrin-mediated transforming growth factor β activation. Journal of Biological Chemistry, 2014, vol. 289, no. 51, pp. 35246–35263.

Townsend A. Autoimmunity to ACE2 as a possible cause of tissue inflammation in COVID-19. Medical Hypotheses, 2020, vol. 144, pp. 110043.

Cappello F., Marino Gammazza A., Dieli F., Conway de Macario E., Macario A.J.L. Does sars-COV-2 trigger stress-induced autoimmunity by molecular mimicry? A hypothesis. Journal of Clinical Medicine, 2020, vol. 9, no. 7, pp. 2038.

Marino Gammazza A., Légaré, S., Lo Bosco G., Fucarino A., Angileri F., Conway de Macario E., Macario A.J.L., et al. Human molecular chaperones share with SARS-COV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: Possible role of molecular mimicry in COVID-19. Cell Stress and Chaperones, 2020, vol. 25, no. 5, pp. 737–741.

Cappello F. Is covid-19 a proteiform disease inducing also molecular mimicry phenomena?. Cell Stress and Chaperones, 2020, vol. 25, no. 3, pp. 381–382.

Sheahan T., Morrison T.E., Funkhouser W., Uematsu S., Akira S., Baric R.S., Heise M.T. Myd88 is required for protection from lethal infection with a mouse-adapted SARS-COV. PLoS Pathogens, 2008, vol. 4, no. 12. Crossref

Hu W., Yen Y.-T., Singh S., Kao C.-L., Wu-Hsieh B.A. SARS-COV regulates immune function-related gene expression in human monocytic cells. Viral Immunology, 2012, vol. 25, no. 4, pp. 277–288.

Page C., Goicochea L., Matthews K., Zhang Y., Klover P., Holtzman M.J., Hennighausen L., et al. Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection. Journal of Virology, 2012, vol. 86, no. 24, pp. 13334–13349.

Huang K.-J., Su I.-J., Theron M., Wu Y.-C., Lai S.-K., Liu C.-C., Lei H.-Y. An interferon-?-related cytokine storm in SARS patients. Journal of Medical Virology, 2004, vol. 75, no. 2, pp. 185–194.

Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H., Lit L.C., et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clinical and Experimental Immunology, 2004, vol. 136, no. 1, pp. 95–103.

Razzaque M.S., Taguchi T. Pulmonary fibrosis: Cellular and molecular events. Pathology International, 2003, vol. 53, no. 3, pp. 133–145.

Grimminger F., Günther A., Vancheri C. The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis. European Respiratory Journal, 2015, vol. 45, no. 5, pp. 1426–1433.

Otoupalova E., Smith S., Cheng G., Thannickal V.J. Oxidative stress in pulmonary fibrosis. Comprehensive Physiology, 2020, pp. 509–547.

Gonzalez-Gonzalez F.J., Chandel N.S., Jain M., Budinger G.R.S. Reactive oxygen species as signaling molecules in the development of lung fibrosis. Translational Research, 20017, vol. 190, pp. 61–68.

Zemans R.L., Colgan S.P., Downey G.P. Transepithelial migration of neutrophils. American Journal of Respiratory Cell and Molecular Biology, 2009, vol. 40, no. 5, pp. 519–535.

George P.M., Wells A.U., Jenkins R.G. Pulmonary fibrosis and covid-19: The potential role for antifibrotic therapy. The Lancet Respiratory Medicine, 2020, vol. 8, no. 8, pp. 807–815.

Pittet J.-F., Griffiths M.J.D., Geiser T., Kaminski N., Dalton S.L., Huang X., Brown L.A., et al. TGF-β is a critical mediator of Acute Lung Injury. Journal of Clinical Investigation, 2001, vol. 107, no. 12, pp. 1537–1544.

Hamada N., Kuwano K., Yamada M., Hagimoto N., Hiasa K., Egashira K., Nakashima N., et al. Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. The Journal of Immunology, 2005, vol. 175, no. 2, pp. 1224–1231.

Ask K., Bonniaud P., Maass K., Eickelberg O., Margetts P.J., Warburton D., Groffen J., et al. Progressive pulmonary fibrosis is mediated by TGF-β isoform 1 but not TGF-β3. The International Journal of Biochemistry & Cell Biology, 2008, vol. 40, no. 3, pp. 484–495.

Cai Q., Yang M., Liu D., Chen J., Shu D., Xia J., Liao X., et al. Experimental treatment with favipiravir for COVID-19: An open-label Control Study. Engineering, 2020, vol. 6, no. 10, pp. 1192–1198.

Grein J., Ohmagari N., Shin D., Diaz G., Asperges E., Castagna A., Feldt T., et al. Compassionate use of Remdesivir for patients with severe COVID-19. New England Journal of Medicine, 2020, vol. 382, no. 24, pp. 2327–2336.

Young B.E., Ong S.W., Kalimuddin S., Low J.G., Tan S.Y., Loh J., Ng O.-T., et al. Epidemiologic features and clinical course of patients infected with SARS-COV-2 in Singapore. JAMA, 2020, vol. 323, no. 15, pp. 1488.

Barlow A., Landolf K.M., Barlow B., Yeung S.Y., Heavner J.J., Claassen C.W., Heavner M.S. Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 2020, vol. 40, no. 5, pp. 416–437.

Şimşek Yavuz S., Ünal S. Antiviral treatment of covid-19. Turkish Journal Of Medical Sciences, 2020, vol. 50, no. SI-1, pp. 611–619.

Caly L., Druce J.D., Catton M.G., Jans D.A., Wagstaff K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-COV-2 in vitro. Antiviral Research, 2020, vol. 178, pp. 104787.

Rajter J.C., Sherman M.S., Fatteh N., Vogel F., Sacks J., Rajter J.-J. Use of ivermectin is associated with lower mortality in hospitalized patients with coronavirus disease 2019. Chest, 2021, vol. 159, no. 1, pp. 85–92.

Kaur H., Shekhar N., Sharma S., Sarma P., Prakash A., Medhi B. Ivermectin as a potential drug for treatment of COVID-19: An in-sync review with clinical and computational attributes. Pharmacological Reports, 2021, vol. 73, no. 3, pp. 736-749. Crossref

King T.E., Albera C., Bradford W.Z., Costabel U., Hormel P., Lancaster L., Noble P.W., et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (inspire): A multicentre, randomised, placebo-controlled trial. The Lancet, 2009, vol. 374, no. 9685, pp. 222–228.

George P.M., Oliver E., Dorfmuller P., Dubois O.D., Reed D.M., Kirkby N.S., Mohamed N.A., et al. Evidence for the involvement of type I interferon in pulmonary arterial hypertension. Circulation Research, 2014, vol. 114, no. 4, pp. 677–688.

Savale L., Sattler C., Günther S., Montani D., Chaumais M.-C., Perrin S., Jaïs X., et al. Pulmonary arterial hypertension in patients treated with Interferon. European Respiratory Journal, 2014, vol. 44, no. 6, pp. 1627–1634.

Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., et al. Clinical course and risk factors for mortality of adult inpatients with covid-19 in Wuhan China: A retrospective cohort study. The Lancet, 2020, vol. 395, no. 10229, pp. 1054–1062.

Meliopoulos V.A., Van de Velde L.-A., Van de Velde N.C., Karlsson E.A., Neale G., Vogel P., Guy C., et al. An epithelial integrin regulates the amplitude of protective lung interferon responses against multiple respiratory pathogens. PLOS Pathogens, 2016, vol. 12, no. 8. Crossref

Li F. Receptor recognition mechanisms of coronaviruses: A Decade of Structural studies. Journal of Virology, 2015, vol. 89, no. 4, pp. 1954–1964.

Raghu G., van den Blink B., Hamblin M.J., Brown A.W., Golden J.A., Ho L.A., Wijsenbeek M.S., et al. Effect of recombinant human Pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis. JAMA, 2018, vol. 319, no. 22, pp. 2299.

Ma Y.J., Garred P. Pentraxins in complement activation and regulation. Frontiers in Immunology, 2018, vol. 9. Crossref

Pilling D., Gomer R.H. Persistent lung inflammation and fibrosis in serum amyloid P component (APCs-/-) knockout mice. PLoS ONE, 2014, vol. 9, no. 4. Crossref

Velden J.L., Ye Y., Nolin J.D., Hoffman S.M., Chapman D.G., Lahue K.G., Abdalla S., et al. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clinical and Translational Medicine, 2016, vol. 5, no. 1. Crossref

South A.M., Tomlinson L., Edmonston D., Hiremath S., Sparks M.A. Controversies of renin–angiotensin system inhibition during the COVID-19 pandemic. Nature Reviews Nephrology, 2020, vol. 16, no. 6, pp. 305–307.

Ferrario C.M., Jessup J., Chappell M.C., Averill D.B., Brosnihan K.B., Tallant E.A., Diz D.I., et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation, 2005, vol. 111, no. 20, pp. 2605–2610.

Borthwick L.A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Seminars in Immunopathology, 2016, vol. 38, no. 4, pp. 517–534.

Moodley Y.P., Scaffidi A.K., Misso N.L., Keerthisingam C., McAnulty R.J., Laurent G.J., Mutsaers S.E., et al. Fibroblasts isolated from normal lungs and those with idiopathic pulmonary fibrosis differ in interleukin-6/gp130-mediated cell signaling and proliferation. The American Journal of Pathology, 2003, vol. 163, no. 1, pp. 345–354.

Le T.-T.T., Karmouty-Quintana H., Melicoff E., Le T.-T.T., Weng T., Chen N.-Y., Pedroza M., et al. Blockade of IL-6 trans signaling attenuates pulmonary fibrosis. The Journal of Immunology, 2014, vol. 193, no. 7, pp. 3755–3768.

O'Donoghue R.J., Knight D.A., Richards C.D., Prêle C.M., Lau H.L., Jarnicki A.G., Jones J., et al. Genetic partitioning of interleukin‐6 signalling in mice dissociates STAT3 from smad3‐mediated lung fibrosis. EMBO Molecular Medicine, 2012, vol. 4, no. 9, pp. 939–951.

Kobayashi T., Tanaka K., Fujita T., Umezawa H., Amano H., Yoshioka K., Naito Y., et al. Bidirectional role of IL-6 signal in pathogenesis of lung fibrosis. Respiratory Research, 2015, vol. 16, no. 1. Crossref

Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. Covid-19: Consider cytokine storm syndromes and immunosuppression. The Lancet, 2020, vol. 395, no. 10229, pp. 1033–1034.

Shakoory B., Carcillo J.A., Chatham W.W., Amdur R.L., Zhao H., Dinarello C.A., Cron R.Q., et al. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome. Critical Care Medicine, 2016, vol. 44, no. 2, pp. 275–281.

Tocilizumab in COVID-19 pneumonia (TOCIVID-19) (TOCIVID-19) (2020). Available at: URL (accessed 6 May 2022).

Russell C.D., Millar J.E., Baillie J.K. Clinical evidence does not support corticosteroid treatment for 2019-ncov lung injury. The Lancet, 2020, vol. 395, no. 10223, pp. 473–475.

Golchin A., Seyedjafari E., Ardeshirylajimi A. Mesenchymal stem cell therapy for covid-19: Present or future. Stem Cell Reviews and Reports, 2020, vol. 16, no. 3, pp. 427–433.

Shetty A.K. Mesenchymal stem cell infusion shows promise for Combating Coronavirus (covid-19)- induced pneumonia. Aging and Disease, 2020, vol. 11, no. 2, pp. 462.

Naji A., Favier B., Deschaseaux F., Rouas-Freiss N., Eitoku M., Suganuma N. Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Research & Therapy, 2019, vol. 10, no. 1. Crossref

Wilson J.G., Liu K.D., Zhuo H., Caballero L., McMillan M., Fang X., Cosgrove K., et al. Mesenchymal stem (stromal) cells for treatment of Ards: A phase 1 clinical trial. The Lancet Respiratory Medicine, 2015, vol. 3, no. 1, pp. 24–32.

Matthay M.A., Calfee C.S., Zhuo H., Thompson B.T., Wilson J.G., Levitt, J.E., Rogers A.J., et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (Start Study): A randomised phase 2a safety trial. The Lancet Respiratory Medicine, 2019, vol. 7, no. 2, pp. 154–162.

Gorman E., Shankar-Hari M., Hopkins P., Tunnicliffe W.S., Perkins G.D., Silversides J., McGuigan P., et al. Repair of acute respiratory distress syndrome by stromal cell administration (realist) trial: A phase 1 trial. EClinicalMedicine, 2021, vol. 41, pp. 101167.

Xu X., Jiang W., Chen L., Xu Z., Zhang Q., Zhu M., Ye P., et al. Evaluation of the safety and efficacy of using human menstrual blood‐derived mesenchymal stromal cells in treating severe and critically ill covid‐19 patients: An exploratory clinical trial. Clinical and Translational Medicine, 2021, vol. 11, no. 2. Crossref

Hashemian S.-M.R., Aliannejad R., Zarrabi M., Soleimani M., Vosough M., Hosseini S.-E., Hossieni H., et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill covid-19-induced ards patients: A case series. Stem Cell Research & Therapy, 2021, vol. 12, no. 1. Crossref

Iglesias M., Butrón P., Torre-Villalvazo I., Torre-Anaya E.A., Sierra-Madero J., Rodriguez-Andoney J.J., Tovar-Palacio A.R., et al. Mesenchymal stem cells for the compassionate treatment of severe acute respiratory distress syndrome due to COVID 19. Aging and Disease, 2021, vol. 12, no. 2, pp. 360.

Wu J., Hu Z., Wang L., Tan Y., Hou W., Li Z., Gao T., et al. First case of COVID‐19 infused with HESC derived immunity‐ and matrix‐regulatory cells. Cell Proliferation, 2020, vol. 53, no. 12. Crossref

Shu L., Niu C., Li R., Huang T., Wang Y., Huang M., Ji N., et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Research & Therapy, 2020, vol. 11, no. 1. Crossref

Shi L., Huang H., Lu X., Yan X., Jiang X., Xu R., Wang S., et al. Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: A randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduction and Targeted Therapy, 2021, vol. 6, no. 1. Crossref

Shi L., Yuan X., Yao W., Wang S., Zhang C., Zhang B., Song J., et al. Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial. EBioMedicine, 2022, vol. 75, pp. 103789.

Atluri S., Manchikanti L., Hirsch J.A. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Physician, 2020, vol. 23, no. 2, pp. E71-E83.

Zakaria D.M., Zahran N.M., Arafa S.A., Mehanna R.A., Abdel-Moneim R.A. Histological and physiological studies of the effect of bone marrow-derived mesenchymal stem cells on bleomycin induced lung fibrosis in adult Albino Rats. Tissue Engineering and Regenerative Medicine, 2020, vol. 18, no. 1, pp. 127–141.

Ortiz L.A., Gambelli F., McBride C., Gaupp D., Baddoo M., Kaminski N., Phinney D.G. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proceedings of the National Academy of Sciences, 2003, vol. 100, no. 14, pp. 8407–8411.

Durand N., Mallea J., Zubair A.C. Insights into the use of mesenchymal stem cells in COVID-19 mediated acute respiratory failure. Npj Regenerative Medicine, 2020, vol. 5, no. 1. Crossref

Leng Z., Zhu R., Hou W., Feng Y., Yang Y., Han Q., Shan G., et al. Transplantation of ace2- mesenchymal stem cells improves the outcome of patients with covid-19 pneumonia. Aging and Disease, 2020, vol. 11, no. 2, pp. 216.

Basiri A., Mansouri F., Azari A., Ranjbarvan P., Zarein F., Heidari A., Golchin A. Stem cell therapy potency in personalizing severe COVID-19 treatment. Stem Cell Reviews and Reports, 2021, vol. 17, no. 1, pp. 193–213.

Costabel U., Richeldi L., du Bois R.M., Raghu G., Azuma A., Brown K.K., Cottin V., et al. Efficacy and safety of nintedanib in patients with idiopathic pulmonary fibrosis: Results of two 52-week, phase III, randomized, placebo-controlled trials (INPULSIS™). Pneumologie, 2015, vol. 69, no. S 01. Crossref

King T.E., Bradford W.Z., Castro-Bernadini S., et al. The ascend study: a randomized, double-blind, placebo controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis (IPF). American Journal of Respiratory and Critical Care Medicine. San Diego, 2014, vol. 189, pp. A6602-A6602.

Grześk G., Woźniak-Wiśniewska A., Błażejewski J., Górny B., Wołowiec Ł., Rogowicz D., Nowaczyk A. The interactions of Nintedanib and oral anticoagulants—molecular mechanisms and clinical implications. International Journal of Molecular Sciences, 2020, vol. 22, no. 1, pp. 282.

Richeldi L., Collard H.R., Jones M.G. Idiopathic pulmonary fibrosis. The Lancet, 2017, vol. 389, no. 10082, pp. 1941–1952.

Seifirad S. Pirfenidone: A novel hypothetical treatment for COVID-19. Medical Hypotheses, 2020, vol. 144, pp. 110005.

Liu Y., Lu F., Kang L., Wang Z., Wang Y. Pirfenidone attenuates bleomycin-induced pulmonary fibrosis in mice by regulating nrf2/bach1 equilibrium. BMC Pulmonary Medicine, 2017, vol. 17, no. 1. Crossref

Bajwah S., Higginson I.J., Ross J.R., Wells A.U., Birring S.S., Riley J., Koffman J. The palliative care needs for fibrotic interstitial lung disease: A qualitative study of patients, informal caregivers and health professionals. Palliative Medicine, 2013, vol. 27, no. 9, pp. 869–876.

Ahmad Alhiyari M., Ata F., Islam Alghizzawi M., Bint I Bilal A., Salih Abdulhadi A., Yousaf Z. Post covid-19 fibrosis, an emerging complicationof SARS-COV-2 infection. IDCases, 2021, vol. 23, pp. e01041.

Wang C., Zhou J., Wang J., Li S., Fukunaga A., Yodoi J., Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduction and Targeted Therapy, 2020, vol. 5, no. 1. Crossref

Zuo H., Cattani-Cavalieri I., Musheshe N., Nikolaev V.O., Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacology & Therapeutics, 2019, vol. 197, pp. 225–242.

Bhogal S., Khraisha O., Al Madani M., Treece J., Baumrucker S.J., Paul T.K. Sildenafil for pulmonary arterial hypertension. American Journal of Therapeutics, 2019, vol. 26, no. 4. Crossref

Aversa A., Vitale C., Volterrani M., Fabbri A., Spera G., Fini M., Rosano G.M. Chronic administration of sildenafil improves markers of endothelial function in men with type 2 diabetes. Diabetic Medicine, 2008, vol. 25, no. 1, pp. 37–44.

Tzoumas N., Farrah T.E., Dhaun N., Webb D.J. Established and emerging therapeutic uses of PDE type 5 inhibitors in cardiovascular disease. British Journal of Pharmacology, 2020, vol. 177, no. 24, pp. 5467–5488.

Bridgewood C., Damiani G., Sharif K., et al. Rationale for evaluating PDE4 inhibition for mitigating against severe inflammation in COVID-19 pneumonia and beyond. The Israel Medical Association journal : IMAJ, 2020, vol. 22, no. 6, pp. 335–339.

Growcott E.J., Spink K.G., Ren X., Afzal S., Banner K.H., Wharton J. Phosphodiesterase Type 4 expression and anti-proliferative effects in human pulmonary artery smooth muscle cells. Respiratory Research, 2006, vol. 7, no. 1. Crossref

Izikki M., Raffestin B., Klar J., Hatzelmann A., Marx D., Tenor H., Zadigue P., et al. Effects of roflumilast, a phosphodiesterase-4 inhibitor on hypoxia- and monocrotaline-induced pulmonary hypertension in rats. Journal of Pharmacology and Experimental Therapeutics, 2009, vol. 330, no. 1, pp. 54–62.

Lee J.-G., Shim S., Kim M.-J., Myung J.K., Jang W.-S., Bae C.-H., Lee S.-J., et al. Pentoxifylline regulates plasminogen activator inhibitor-1 expression and protein kinase a phosphorylation in radiation-induced lung fibrosis. BioMed Research International, 2017, vol. 2017, pp. 1–10.

Raetsch C. Pentoxifylline downregulates profibrogenic cytokines and Procollagen I expression in rat secondary biliary fibrosis. Gut, 2002, vol. 50, no. 2, pp. 241–247.

Motta N.A., Autran L.J., Brazão S.C., Lopes R.de Scaramello C.B., Lima G.F., Brito F.C. Could cilostazol be beneficial in covid-19 treatment? thinking about phosphodiesterase-3 as a therapeutic target. International Immunopharmacology, 2021, vol. 92, pp. 107336.

Tang H.-F., Lu J.-J., Tang J.-F., Zheng X., Liang Y.-qin Wang X.-F., Wang Y.-J., et al. Action of a novel PDE4 inhibitor, ZL-N-91 on lipopolysaccharide-induced acute lung injury. International Immunopharmacology, 2010, vol. 10, no. 4, pp. 406–411.

Park S.Y., Lee S.W., Baek S.H., Lee S.J., Lee W.S., Rhim B.Y., Hong K.W., et al. Induction of heme oxygenase-1 expression by cilostazol contributes to its anti-inflammatory effects in J774 murine macrophages. Immunology Letters, 2011, vol. 136, no. 2, pp. 138–145.

Seong J.M., Yee J., Gwak H.S. Dipeptidyl peptidase‐4 inhibitors lower the risk of autoimmune disease in patients with type 2 diabetes mellitus: A nationwide population‐based Cohort Study. British Journal of Clinical Pharmacology, 2019, vol. 85, no. 8, pp. 1719–1727.

Soare A., Györfi H.A., Matei A.E., Dees C., Rauber S., Wohlfahrt T., Chen C.W., et al. Dipeptidylpeptidase 4 as a marker of activated fibroblasts and a potential target for the treatment of fibrosis in systemic sclerosis. Arthritis & Rheumatology, 2020, vol. 72, no. 1, pp. 137–149.

Valencia I., Peiró, C., Lorenzo Ó., Sánchez-Ferrer C.F., Eckel J., Romacho T. DPP4 and ACE2 in diabetes and covid-19: Therapeutic targets for cardiovascular complications?. Frontiers in Pharmacology, 2020, vol. 11, pp. 1161. Crossref

Singh K., Chen Y.-C., Judy J.T., Seifuddin F., Tunc I., Pirooznia M. Network analysis and transcriptome profiling identify autophagic and mitochondrial dysfunctions in SARS-COV-2 infection, 2020, bioRxiv : the preprint server for biology, 2020.05.13.092536. Crossref

Appelberg S., Gupta S., Svensson Akusjärvi S., Ambikan A.T., Mikaeloff F., Saccon E., Végvári Á., et al. Dysregulation in AKT/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-COV-2 infected cells. Emerging Microbes & Infections, 2020, vol. 9, no. 1, pp. 1748–1760.

Mészáros B., Sámano-Sánchez H., Alvarado-Valverde J., Čalyševa J., Martínez-Pérez E., Alves R., Shields D.C., et al. Short linear motif candidates in the cell entry system used by SARS-COV-2 and their potential therapeutic implications. Science Signaling, 2021, vol. 14, no. 665. Crossref

Zhou Y., Hou Y., Shen J., Huang Y., Martin W., Cheng F. Network-based drug repurposing for Novel Coronavirus 2019-ncov/SARS-COV-2. Cell Discovery, 2020, vol. 6, no. 1. Crossref

Gordon D.E., Jang G.M., Bouhaddou M., Xu J., Obernier K., White K.M., O’Meara M.J., et al. A SARS-COV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, vol. 583, no. 7816, pp. 459–468.

Wei Y.-M., Li X., Xu M., Abais J.M., Chen Y., Riebling C.R., Boini K.M., et al. Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes. Cellular Physiology and Biochemistry, 2013, vol. 31, no. 6, pp. 925–937.

Gu W., Cui R., Ding T., Li X., Peng J., Xu W., Han F., et al. Simvastatin alleviates airway inflammation and remodelling through up-regulation of autophagy in mouse models of asthma. Respirology, 2016, vol. 22, no. 3, pp. 533–541.

Gassen N.C., Niemeyer D., Muth D., Corman V.M., Martinelli S., Gassen A., Hafner K., et al. SKP2 attenuates autophagy through beclin1-ubiquitination and its inhibition reduces MERS-coronavirus infection. Nature Communications, 2019, vol. 10, no. 1. Crossref

Wu C.-Y., Jan J.-T., Ma S.-H., Kuo C.-J., Juan H.-F., Cheng Y.-S.E., Hsu H.-H., et al. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proceedings of the National Academy of Sciences, 2004, vol. 101, no. 27, pp. 10012–10017.

Huang F.-C., Kuo H.-C., Huang Y.-H., Yu H.-R., Li S.-C., Kuo H.-C. Anti-inflammatory effect of resveratrol in human coronary arterial endothelial cells via induction of autophagy: Implication for the treatment of kawasaki disease. BMC Pharmacology and Toxicology, 2017, vol. 18, no. 1. Crossref

Limanaqi F., Busceti C.L., Biagioni F., Lazzeri G., Forte M., Schiavon S., Sciarretta S., et al. Cell clearing systems as targets of polyphenols in viral infections: Potential implications for covid-19 pathogenesis. Antioxidants, 2020, vol. 9, no. 11, pp. 1105.

García-Barrado M., Iglesias-Osma M., Pérez-García E., Carrero S., Blanco E., Carretero-Hernández M., Carretero J. Role of flavonoids in the interactions among obesity, inflammation, and autophagy. Pharmaceuticals, 2020, vol. 13, no. 11, pp. 342.

Santos J.C., Ribeiro M.L., Gambero A. The impact of polyphenols-based diet on the inflammatory profile in covid-19 elderly and obese patients. Frontiers in Physiology, 2021, vol. 11. Crossref

Biţă, A., Scorei I.R., Mogoantă, L., Bejenaru C., Mogoşanu G.D., Bejenaru L.E. Natural and semisynthetic candidate molecules for COVID-19 prophylaxis and treatment. Romanian Journal of Morphology and Embryology, 2020, vol. 61, no. 2, pp. 321–334.

García-Pérez B.E., González-Rojas J.A., Salazar M.I., Torres-Torres C., Castrejón-Jiménez N.S. Taming the autophagy as a strategy for treating covid-19. Cells, 2020, vol. 9, no. 12, pp. 2679.

Giampieri F., Afrin S., Forbes-Hernandez T.Y., Gasparrini M., Cianciosi D., Reboredo-Rodriguez P., Varela-Lopez A., et al. Autophagy in human health and disease: Novel therapeutic opportunities. Antioxidants & Redox Signaling, 2019, vol. 30, no. 4, pp. 577–634.

Michaličková, D., Hrnčíř, T., Canová, N.K., Slanař, O. Targeting KEAP1/nrf2/are signaling pathway in multiple sclerosis. European Journal of Pharmacology, 2020, vol. 873, pp. 172973.

Yan C., Li T.-S. Dual role of mitophagy in cancer drug resistance. Anticancer Research, 2018, vol. 38, no. 2, pp. 617–621.

Nehme J., Borghesan M., Mackedenski S., Bird T.G., Demaria M. Cellular senescence as a potential mediator of Covid‐19 severity in the elderly. Aging Cell, 2020, vol. 19, no. 10. Crossref.

Russo G.L., Spagnuolo C., Russo M., Tedesco I., Moccia S., Cervellera C. Mechanisms of aging and potential role of selected polyphenols in extending healthspan. Biochemical Pharmacology, 2020, vol. 173, pp. 113719.

Saeedi-Boroujeni A., Mahmoudian-Sani M.-R. Anti-inflammatory potential of quercetin in COVID-19 treatment. Journal of Inflammation, 2021, vol. 18, no. 1. Crossref

Prasansuklab A., Theerasri A., Rangsinth P., Sillapachaiyaporn C., Chuchawankul S., Tencomnao T. Anti-covid-19 drug candidates: A review on potential biological activities of natural products in the management of new coronavirus infection. Journal of Traditional and Complementary Medicine, 2021, vol. 11, no. 2, pp. 144–157.

Mancia G., Rea F., Ludergnani M., Apolone G., Corrao G. Renin–angiotensin–aldosterone system blockers and the risk of covid-19. New England Journal of Medicine, 2020, vol. 382, no. 25, pp. 2431–2440.

Reynolds H.R., Adhikari S., Pulgarin C., Troxel A.B., Iturrate E., Johnson S.B., Hausvater A., et al. Renin–angiotensin–aldosterone system inhibitors and risk of covid-19. New England Journal of Medicine, 2020, vol. 382, no. 25, pp. 2441–2448.

South A.M., Brady T.M., Flynn J.T. ACE2 (angiotensin-converting enzyme 2), COVID-19, and ACE inhibitor and Ang II (angiotensin II) receptor blocker use during the pandemic. Hypertension, 2020, vol. 76, no. 1, pp. 16–22.

Levy E., Delvin E., Marcil V., Spahis S. Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019 (covid-19)?. American Journal of Physiology-Endocrinology and Metabolism, 2019, vol. 319, no. 4. Crossref

Liu H., Yu H., Cao Z., Gu J., Pei L., Jia M., Su M. Kaempferol modulates autophagy and alleviates silica-induced pulmonary fibrosis. DNA and Cell Biology, 2019, vol. 38, no. 12, pp. 1418–1426.

Cao H., Jia Q., Shen D., Yan L., Chen C., Xing S. Quercetin has a protective effect on atherosclerosis via enhancement of autophagy in apoe / mice. Experimental and Therapeutic Medicine, 2019, vol. 18, no. 4, pp. 2451-2458. Crossref

Zhi K., Li M., Bai J., Wu Y., Zhou S., Zhang X., Qu L. Quercitrin treatment protects endothelial progenitor cells from oxidative damage via inducing autophagy through extracellular signal-regulated kinase. Angiogenesis, 2016, vol. 19, no. 3, pp. 311–324.

Yang L., Jiao X., Wu J., Zhao J., Liu T., Xu J., Ma X., et al. Cordyceps sinensis inhibits airway remodeling in rats with chronic obstructive pulmonary disease. Experimental and Therapeutic Medicine, 2018. Crossref

Huang T.-T., Lai H.-C., Ko Y.-F., Ojcius D.M., Lan Y.-W., Martel J., Young J.D., et al. Hirsutella sinensis mycelium attenuates bleomycin-induced pulmonary inflammation and fibrosis in vivo. Scientific Reports, 2015, vol. 5, no. 1. Crossref

Huang T.-T., Chong K.-Y., Ojcius D.M., Wu Y.-H., Ko Y.-F., Wu C.-Y., Martel J., et al. Hirsutella sinensis mycelium suppresses interleukin-1β and interleukin-18 secretion by inhibiting both canonical and non-canonical inflammasomes. Scientific Reports, 2013, vol. 3, no. 1. Crossref

Huang F.-C., Kuo H.-C., Huang Y.-H., Yu H.-R., Li S.-C., Kuo H.-C. Anti-inflammatory effect of resveratrol in human coronary arterial endothelial cells via induction of autophagy: Implication for the treatment of kawasaki disease. BMC Pharmacology and Toxicology, 2017, vol. 18, no. 1. Crossref

Mehany T., Khalifa I., Barakat H., Althwab S.A., Alharbi Y.M., El-Sohaimy S. Polyphenols as promising biologically active substances for preventing SARS-COV-2: A review with research evidence and underlying mechanisms. Food Bioscience, 2021, vol. 40, pp. 100891.

Banerjee R., Perera L., Tillekeratne L.M.V. Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today, 2021, vol. 26, no. 3, pp. 804–816.

Paraiso I.L., Revel J.S., Stevens J.F. Potential use of polyphenols in the battle against COVID-19. Current Opinion in Food Science, 2020, vol. 32, pp. 149–155.

Giovinazzo G., Gerardi C., Uberti-Foppa C., Lopalco L. Can natural polyphenols help in reducing cytokine storm in COVID-19 patients?. Molecules, 2020, vol. 25, no. 24, pp. 5888.