THE PLANT ARTEMISIA ANNUA (“SWEET WORMWOOD”) KAZAKHSTAN’S SOURSE OF BIOACTIVE COMPOUNDS POTENTIALLY CURE THE SARS-CoV-2 INFECTION
Main Article Content
Authors
A. Maftakhova
D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry 142, Kunaev str., Almaty, 050000, Kazakhstan
Al-Farabi Kazakh National University, 71 Al-Farabi ave., Almaty, 050040, Republic of Kazakhstan
L. Syzdykova
National Center for Biotechnology 13/5, Korgalzhyn Hwy, Nur-Sultan, 010000, Kazakhstan
V. Keer
National Center for Biotechnology 13/5, Korgalzhyn Hwy, Nur-Sultan, 010000, Kazakhstan
A. Shustov
National Center for Biotechnology 13/5, Korgalzhyn Hwy, Nur-Sultan, 010000, Kazakhstan
M. Zhurinov
D.V. Sokolsky Institute of Fuel, Catalysis and Electrochemistry 142, Kunaev str., Almaty, 050000, Kazakhstan
Abstract
The genus Artemisia (“wormwood”) is widely represented in the flora of Kazakhstan both by the species diversity (at least 80 species) and biomass. Members of this genus, such as Artemisia annua ("annual wormwood") attract the attention of the global biomedical community because these plants produce the unusual sesquiterpene lactone artemisinin, which has a proven efficacy as an antimalarial drug and has also been tested for antiviral activity. Due to their potential antiviral properties, wormwood-derived phytocompounds are of interest as promising drugs against the SARS-CoV-2 coronavirus, which caused the largest pandemic of the 21st century. This review presents the studied diversity of secondary metabolites synthesized by various Artemisia species, describes the actual practical significance of one species A. annua, as well as the possible use of substances from this species as antiviral agents. There is a need for further research into secondary metabolites of wormwood with antiviral properties due to the expectation of continued circulation of the SARS-CoV-2 virus and in order to complement the arsenal of antiviral therapy.
Keywords
Artemisia annua, sesquiterpene lactone, artemisinin, antiviral activity, SARS-CoV-2
Article Details
References
Nicola M., Alsafi Z., Sohrabi C., Kerwan A., Al-Jabir A., Iosifidis C., Agha M., Agha R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg, 2020, vol. 78, pp. 185-193. 32305533. Crossref
Phillips N. The coronavirus is here to stay - here's what that means. Nature, 2021, vol. 590, no. 7846, pp. 382-384. 33594289 . Crossref
Callaway E. Fast-spreading COVID variant can elude immune responses. Nature, 2021, vol. 589, no. 7843, pp. 500-501. 33479534. Crossref
McCormick K.D., Jacobs J.L., Mellors J.W. The emerging plasticity of SARS-CoV-2. Science, 2021, vol. 371, no. 6536, pp. 1306-1308. 33766871. Crossref
Aschwanden C. Five reasons why COVID herd immunity is probably impossible. Nature, 2021, vol. 591, no. 7851, pp. 520-522. 33737753. Crossref
Beams A.B., Bateman R., Adler F.R. Will SARS-CoV-2 Become Just Another Seasonal Coronavirus? Viruses, 2021, vol. 13, no.5, pp. 854. 34067128. Crossref
Callaway E. Beyond Omicron: what's next for COVID's viral evolution? Nature, 2021, vol. 600, no. 7888, pp. 204-207. 34876665. Crossref
Robinson P.C., Liew D.F., Tanner H.L., Grainger J.R., Dwek R.A., Reisler R.B. et.al. COVID-19 therapeutics: Challenges and directions for the future. Proc Natl Acad Sci USA, 2022, vol. 119, no.15, e2119893119. 35385354. Crossref
Singh, M., de Wit E. Antiviral agents for the treatment of COVID-19: Progress and challenges. Cell Rep Med, 2022, vol. 3, no.3, pp. 100. 35474740. Crossref
Teoh S.L., Lim Y.H., Lai N.M., Lee S.W. Directly Acting Antivirals for COVID-19: Where Do We Stand? Front Microbiol, 2020, vol. 11, pp. 1857. 32849448. Crossref
Kelleni M.T. Tocilizumab, Remdesivir, Favipiravir, and Dexamethasone Repurposed for COVID-19: a Comprehensive Clinical and Pharmacovigilant Reassessment. SN Compr Clin Med, 2021, vol. 3, no. 4, pp. 919-923. 33644693. Crossref
Mechineni A., Kassab H., Manickam R. Remdesivir for the treatment of COVID 19: review of the pharmacological properties, safety and clinical effectiveness. Expert Opin Drug Saf, 2021, vol. 20, no. 11, pp. 1299-1307. 34350582. Crossref
Kumar S., Chandele A., Sharma, A. Current status of therapeutic monoclonal antibodies against SARS-CoV-2. PLoS Pathog, 2021, vol. 17, no 9, e1009885. 34478455. Crossref
Saravolatz L.D., Depcinski S., Sharma M. Molnupiravir and Nirmatrelvir-Ritonavir: Oral COVID Antiviral Drugs. Clin Infect Dis, 2022. 35245942. Crossref
Joshi S., Parkar J., Ansari A., Vora A., Talwar D., Tiwaskar M., Patil S., Barkate H. Role of favipiravir in the treatment of COVID-19. Int J Infect Dis, 2021, vol. 102, pp. 501-508. 33130203. Crossref
Shinkai M., Tsushima K., Tanaka S., Hagiwara E., Tarumoto N., Kawada I et.al. Efficacy and Safety of Favipiravir in Moderate COVID-19 Pneumonia Patients without Oxygen Therapy: A Randomized, Phase III Clinical Trial. Infect Dis Ther, 2021, vol. 10, no. 4, pp. 2489-2509. 34453234. Crossref
Remali J., Aizat W.M. A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection. Front Pharmacol, 2020, vol. 11:589044. 33519449. Crossref
Boukhatem M.N., Setzer W.N. Aromatic Herbs, Medicinal Plant-Derived Essential Oils, and Phytochemical Extracts as Potential Therapies for Coronaviruses: Future Perspectives. Plants (Basel), 2020, vol. 9, no.6. 32604842. Crossref
Abad M.J., Bedoya L.M., Apaza L., Bermejo P. The artemisia L. Genus: a review of bioactive essential oils. Molecules, 2012, vol. 17, no. 3, pp. 2542-66. 22388966. Crossref
Ekiert H., Świątkowska J., Klin P., Rzepiela A., Szopa A. Artemisia annua - Importance in Traditional Medicine and Current State of Knowledge on the Chemistry, Biological Activity and Possible Applications. Planta Med, 2021, vol. 87, no.8, pp. 584-599. 33482666. Crossref
Cheong D.H., Tan D.W., Wong F.W., Tran T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol Res, 2020, vol. 158. 32405226. Crossref
Septembre-Malaterre A., Lalarizo Rakoto M., Marodon C., Bedoui Y., Nakab J. et.al. Artemisia annua, a Traditional Plant Brought to Light. Int J Mol Sci, 2020, vol. 21, no. 14. 32679734. Crossref
Radulović N.S., Randjelović P.J., Stojanović N.M., Blagojević P.D., Stojanović-Radić Z.Z., Ilić I.R., Djordjević V.B. Toxic essential oils. Part II: chemical, toxicological, pharmacological and microbiological profiles of Artemisia annua L. volatiles. Food Chem Toxicol, 2013, vol. 58, pp. 37-49. 23607933. Crossref
Ivanescu B., Miron A., Corciova A. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis. J Anal Methods Chem, 2015. 26495156. Crossref
Tu Y. Artemisinin-A Gift from Traditional Chinese Medicine to the World (Nobel Lecture). Angew Chem Int Ed Engl, 2016, vol. 55, no. 35, pp. 10210-26. 27488942. Crossref
Kong L.Y., Tan R.X. Artemisinin, a miracle of traditional Chinese medicine. Nat Prod Rep, 2015, vol. 32, no. 12, pp. 1617-21. 26561737. Crossref
Wetzstein H.Y., Porter J.A., Janick J., Ferreira J.F., Mutui T.M. Selection and Clonal Propagation of High Artemisinin Genotypes of Artemisia annua. Front Plant Sci, 2018, vol. 9. 29636758. Crossref
Chen M., Yan T., Ji L., Dong Y. et.al. Comprehensive Map of the Artemisia annua Proteome and Quantification of Differential Protein Expression in Chemotypes Producing High versus Low Content of Artemisinin. Proteomics, 2020, vol. 20, no. 10, e1900310. 32311217. Crossref
Sankhuan D., Niramolyanun G., Kangwanrangsan N., Nakano M., Supaibulwatana K. Variation in terpenoids in leaves of Artemisia annua grown under different LED spectra resulting in diverse antimalarial activities against Plasmodium falciparum. BMC Plant Bio,l 2022, vol. 22, no. 1, pp. 128. 35313811. Crossref
Zhu C., Cook S.P. A concise synthesis of (+)-artemisinin. J Am Chem Soc, 2012, vol. 134, no. 33, pp. 13577-9. 22866604. Crossref
Manayi A., Nabavi S.M., Khayatkashani M., Habtemariam S., Khayat Kashani H. R. Arglabin could target inflammasome-induced ARDS and cytokine storm associated with COVID-19. Mol Biol Rep, 2021, vol. 48, no. 12, pp. 8221-8225. 34655016. Crossref
Noori S., Hassan Z.M. Tehranolide inhibits cell proliferation via calmodulin inhibition, PDE, and PKA activation. Tumour Biol, 2014, vol. 35, no. 1, pp. 257-64. 24222327. Crossref
Noori S., Hassan Z.M. Tehranolide inhibits proliferation of MCF-7 human breast cancer cells by inducing G0/G1 arrest and apoptosis. Free Radic Biol Med, 2012, vol.52, no. 9, pp. 1987-99. 22366652. Crossref
Ordóñez P.E., Mery D.E., Sharma K.K., Nemu S. et.al. Synthesis, Crystallography, and Anti-Leukemic Activity of the Amino Adducts of Dehydroleucodine. Molecules, 2020, vol. 25, no.20. 33092263. Crossref
Obeid S., Alen J., Nguyen V.H., Pham V.C. Artemisinin analogues as potent inhibitors of in vitro hepatitis C virus replication. PLoS One, 2013, vol. 8, no. 12, e81783. 24349127. Crossref
Blazquez A.G., Fernandez-Dolon M., Sanchez-Vicente L. et al. Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis. Bioorg Med Chem, 2013, vol. 21, no. 14, pp. 4432-41. 23685181. Crossref
Turuspekov Y., Genievskaya Y., Baibulatova A., Zatybekov A., Kotuhov Y., Ishmuratova M., Imanbayeva A., Abugalieva S. Phylogenetic Taxonomy of L. Species from Kazakhstan Based on k Analyses. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences, 2018, vol, 72, no. 1, pp. 29-37. Crossref