THE β-AMYLASE GENES OF GRASSES AND A PHYLOGENETIC ANALYSIS OF THE GREEN PLANTS

Main Article Content

Authors

O.R. Stratula

Plant Breeding and Genetics Institute National Center of Seed and Cultivar Investigation, Department of Genomics and Biotechnology, Ovidiopolskaya Road 3, Odessa, 65036, Ukraine

V.V. Kotseruba

Komarov Botanical Institute, Russian Academy of Science, Professor Popova Street, 2, St. Peterburg, 197376, Russia

R.N. Kalendar

Laboratory of Plant Genomics and Bioinformatics, RSE "National Center for Biotechnology", 13/1, Sh. Valikhanov str., Astana, 010000, Kazakhstan

Abstract

A new molecular marker – nuclear gene BAMY, encoding β-amylase enzyme which carries out hydrolysis mainly 1,4-α-glucan maltohydrase in amylose, amylopectin, glycogen, and other maltooligosaccharides for example monocotyledonous and dicotyledonous plant species has been studied. We cloned and sequenced the nucleotide sequences of the genes of BAMY for cereal species and obtained their corresponding amino acid sequences. Based on the data on DNA sequences BAMY, as well as the amino acid sequences of β-amylase showing phylogenetic relationships between genera, families, orders and classes of plants. The result of phylogenetic analysis corresponds to the modern concept of the taxonomy of the analysed species. The studied gene BAMY promising for further exploration and use as a marker for molecular identification in the analysis of near and distant species of the plant kingdom. We obtained the genera and species-specific EPIC-exons primers sets to amplify BAMY gene fragments representatives of the family Poaceae, which enable them to use the taxonomic analysis of a wide range. The PCR primers sets allowed to use for screening a collection of species of grasses and established their inter- and intraspecific variability. This approach allows us to predict accessory an unknown genomic DNA sequences to known species, genera, families or classes of plants.

Keywords

β-amylase, phylogeny, angiosperms, Poaceae, Triticeae

Article Details

References

Vroh B., Mcmullen M.D., Sanchez-Villeda H., Schroeder S., Gardiner J., Soderlund C., Wing R., Fang Z., Coe Jr. E.H. Single nucleotide polymorphisms and insertion-deletions for genetic markers and anchoring the maize fingerprint contig physical map. Crop Science, 2006, vol. 46, рр. 12-21.

Braglia L. et al. cTBP: A Successful Intron Length Polymorphism (ILP)-Based Genotyping Method Targeted to Well Defined Experimental Needs. Diversity, 2010, vol. 2, no. 4, рр. 572-585. doi:10.3390/d2040572.

Morello L., Breviario D. Plant spliceosomal introns: not only cut and paste. Curr Genomics, 2008, vol. 9, no. 4, рр. 227-238. doi:10.2174/138920208784533629.

Yang L. et al. PIP: a database of potential intron polymorphism markers. Bioinformatics, 2007, vol. 23, no. 16, рр. 2174-2177. doi:10.1093/bioinformatics/btm296.

Ludwig M. Functional evolution of noncoding DNA. Curr Opin Genet Dev, 2002, vol. 12, no. 6, рр. 634-639. doi:10.1016/s0959-437x(02)00355-6.

Wang X. et al. Genome-wide prediction of cis-acting RNA elements regulating tissue-specific pre-mRNA alternative splicing. BMC Genomics, 2009, vol. 10, Suppl 1, рр. S4. doi:10.1186/1471-2164-10-S1-S4.

Solis A.S. Splicing fidelity, enhancers, and disease. Frontiers in Bioscience, 2008, vol. 13, no. 13, рр. 1926. doi:10.2741/2812.

Rose A.B., Beliakoff J.A. Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol, 2000, vol. 122, no. 2, рр. 535-542. doi:10.1104/pp.122.2.535.

Jeon J.S. et al. Tissue-preferential expression of a rice α-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol, 2000, vol. 123, no. 3, рр. 1005-1014. doi:10.1104/pp.123.3.1005.

Holland J.B. et al. Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome, 2001, vol. 44, no. 6, рр. 1065-1076.

Fridman E. et al. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences, 2000, vol. 97, no. 9, рр. 4718-4723. doi:10.1073/pnas.97.9.4718.

Chetelat R.T. et al. Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition. Theor Appl Genet, 1995, vol. 91, no. 2, рр. 327-333. doi:10.1007/BF00220895.

Hongtrakul V.S.M., Knapp S.J. DFLP, SSCP, and SSR markers for delta 9-stearoyl-acyl carrier protein desaturases strongly expressed in developing seeds of sunflower: intron lengths are polymorphic among elite inbred lines. Molecular Breeding, 1998, vol. 4, no. 3, рр. 195-203.

Gardes M.B.T. ITS primers with enhanced specificity for basidiomycetes--application to the identification of mycorrhizae and rusts. Molecular Ecology, 1993, vol. 2, рр. 113-118.

Palumbi S.R., Baker C.S. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol, 1994, vol. 11, nо. 3, рр. 426-435.

Bierne N. et al. Screening for intron-length polymorphisms in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR. Molecular Ecology, 2000, vol. 9, nо. 2, рр. 233-235. doi:10.1046/j.1365-294x.2000.00842.x.

Lessa E.P. Rapid surveying of DNA sequence variation in natural populations. Molecular Biology and Evolution, 1992, vol. 9, nо. 2, рр. 323-330.

Li C. et al. Exon-primed intron-crossing (EPIC) markers for non-model teleost fishes. BMC Evol Biol, 2010, vol. 10, рр. 90. doi:10.1186/1471-2148-10-90.

Ishikawa G. et al. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics 2007, vol. 8, рр. 135. doi:10.1186/1471-2164-8-135.

James M.G. et al. Starch synthesis in the cereal endosperm. Curr Opin Plant Biol, 2003, vol. 6, nо. 3, рр. 215-222. doi:10.1016/s1369-5266(03)00042-6.

Briggs D.E. Malts and Malting. Blackie Academic and Professional. New York, 1998.

Mason-Gamer R.J. The β-amylase genes of grasses and a phylogenetic analysis of the Triticeae (Poaceae). Am J Bot, 2005, vol. 92, nо. 6, рр. 1045-1058. doi:10.3732/ajb.92.6.1045.

Kotseruba V. et al. Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8). Genome, 2003, vol. 46, nо. 1, рр. 156-163. doi:10.1139/g02-104.

Soltis D.E., Soltis P.S. The dynamic nature of polyploid genomes. Proceedings of the National Academy of Sciences USA, 1995, vol. 29, рр. 8089-8091.

Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res, 1988, vol. 16, nо. 22, рр. 10881-10890.

Kalendar R. et al. FastPCR Software for PCR, In Silico PCR, and Oligonucleotide Assembly and Analysis. In: S.Valla, R. Lale (eds). DNA Cloning and Assembly Methods, 2014, vol. 1116. Methods in Molecular Biology. Humana Press, pp. 271-302. doi:10.1007/978-1-62703-764-8_18.

Tamura K. et al. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol, 2013, vol. 30, nо. 12, рр. 2725-2729. doi:10.1093/molbev/mst197.

Erkkila M.J. Intron III-specific markers for screening of β-amylase alleles in barley cultivars. Plant Molecular Biology Reporter, 1999, vol. 17, nо. 2, рр. 139-147. doi:10.1023/A:1007595821379.

Peng J. et al. Wild emmer wheat, 'Triticum dicoccoides', occupies a pivotal position in wheat domestication process. Australian Journal of Crop Science, 2011, vol. 5, nо. 9, рр. 1127-1143.

Mujeeb-Kazi A., Rajaram S. (eds) Transferring alien genes from related species and genera for wheat improvement. FAO Plant Production and Protection Series, 2002, vol. 30.

Yang E.N. et al. Molecular cytogenetic characterization of a new leaf rolling triticale. Genet Mol Res, 2011, vol. 10, nо. 4, рр. 2953-2961. doi:10.4238/2011.November.29.6.

Lukaszewski A.J. Cytogenetically Engineered Rye Chromosomes 1R to Improve Bread-making Quality of Hexaploid Triticale. Crop Science, 2006, vol. 46, nо. 5, рр. 2183. doi:10.2135/cropsci2006.03.0135.

Tzvelev N.N. The system of grasses (Poaceae) and their evolution. The Botanical Review, 1989, vol. 55, nо. 3, рр. 141-203. doi:10.1007/bf02858328.

Tzvelev N.N. Problemy teoreticheskoj morfologii i evoljucii vysshih rastenij [The problems of theoretical morphology and evolution of higher plants]. Sbornik izbrannyh trudov. T-vo nauch. izd. KMK.

Gale M.D., Devos K.M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998, vol. 95, nо. 5, рр. 1971-1974.

Tzvelev N.N., Zhukova P.G. O naimen'shem osnovnom chisle hromosom v sem Poaceae [The smallest basic chromosome number in genera Poaceae]. Botanicheskij zhurnal, 1974, vol. 59, nо. 2, рр. 265-269.

Tzvelev N.N. Zlaki SSSR [Cereals of USSR]. L., Nauka, 1976.