Main Article Content


A.S. Aksambaeva

National Center for Biotechnology, 13/1 Valikhanova st., Astana, 010000, Kazakhstan

A.V. Shustov

National Center for Biotechnology, 13/1 Valikhanova st., Astana, 010000, Kazakhstan


Periplasmic or extracellular secretory expression were used to produce functionally active recombinant proteins that were incorrectly folded in the cytoplasm of Escherichia coli. At least six different protein-secretion systems were described in Gram-negative bacteria (s.c. types 1-6 secretion systems, T1SS-T6SS), which differ in complexity and morphology (structures of translocons and membrane complexes). Some secretion systems perform translocation in one step (from cytoplasm directly into the extracellular milieu), while others translocate in two steps: the protein is first translocated from the cytoplasm to the periplasmic space with Sec, Tat, or SRP pathways; secondly, a different export carrier transfers the product out of the cell. This review describes the Sec (general secretory pathway), Tat (twin-arginine pathway for proteins with rapid or complex folding), and SRP (co-translational pathway) machinery for translocation from the cytoplasm to the periplasm.

Despite the current understanding of the mechanisms of protein translocation and extracellular release, there is currently no effective way to theoretically predict how to produce a given recombinant protein in a secretory form other than trial and error. Given the diverse secretory apparatuses and systems in E. coli, we expect that secretory expression will be popular in research and industrial applications for cytoplasmic expression.


secretory expression, recombinant protein, signal peptide, secretion system, refolding, translocation, chaperone

Article Details


Yamaguchi H., Miyazaki M. Refolding Techniques for Recovering Biologically Active Recombinant Proteins from Inclusion Bodies. Biomolecules, 2014.

Yoon S.H., Kim S.K., Kim J.F. Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol, 2010, vol. 1, no. 4, pp. 23-29.

Choi J.H., Keum K.C., Lee S. Production of recombinant proteins by high cell density culture of Escherichia coli.ChemEng Sci, 2006, vol. 1, no. 61, pp. 876-885.

Cascales E., Cambillau C. Structural biology of type VI secretion systems Philos Trans R Soc Lond B Biol Sci, 2012, vol. 1592, no. 367, pp. 1102-1111.

Bruser T. The twin-arginine translocation system and its capability for protein secretion in biotechnological protein production.Appl Microbiol Biotechnol, 2007, vol. 1, no. 76, pp. 35-45.

Peterson J.H., Szabady R.L., Bernstein H.D. An unusual signal peptide extension inhibits the binding of bacterial presecretory proteins to the signal recognition particle, trigger factor, and the SecYEG complex.J Biol Chem, 2006, vol. 14, no. 281, pp. 9038-9048.

Choi J.H., Lee S.Y. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol, 2004, vol. 1,no. 64, pp. 625-635.

Joe B., Jeff G., Kumar V.U. Eukaryotic signal sequences for polypeptide expression and polypeptide display libraries. US Patent, no. 20110224102, 2011.

Kostakioti M., Newman C.L., Thanassi D.G., Stathopoulos C. Mechanisms of protein export across the bacterial outer membrane. J Bacteriol, 2005, vol. 13, no. 187, pp. 4306-4314.

Halic M., Gartmann M., Schlenker O., et al. Signal recognition particle receptor exposes the ribosomal translocon binding site. Science, 2006, vol. 5774,no. 312, pp. 745-747.

Steiner D., Forrer P., Stumpp M.T., Pluckthun A. Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display.Nat Biotechnol, 2006, vol. 7, no. 24, pp. 823-831.

Jack R.L., Buchanan G., Dubini A., Hatzixanthis K., Palmer T., Sargent F. Coordinating assembly and export of complex bacterial proteins.EMBO J, 2004, vol. 20, no. 23, pp. 3962-3972.

Berks B.C., Palmer T., Sargent F. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway.Curr Opin Microbio., 2005, vol. 2, no. 8, pp. 174-181.

Lee P.A., Tullman-Ercek D., Georgiou G. The bacterial twin-arginine translocation pathway.Annu Rev Microbiol, 2006, no. 60, pp. 373-395.

Barrett C.M., Ray N., Thomas J.D., Robinson C., Bolhuis A. Quantitative export of a reporter protein, GFP, by the twin-arginine translocation pathway in Escherichia coli.Biochem Biophys Res Commun, 2003, vol. 2, no. 304, pp. 279-284.

Holland I.B., Schmitt L., Young J. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (review). Mol Membr Biol, 2005, vol. 1, no. 22, pp. 29-39.

Sapriel G., Wandersman C., Delepelaire P. The SecB chaperone is bifunctional in Serratiamarcescens: SecB is involved in the Sec pathway and required for HasA secretion by the ABC transporter.J Bacteriol, 2003, vol. 1, no. 185, pp. 80-88.

Korotkov K.V., Sandkvist M., Hol W.G. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol, 2012, vol. 5, no. 10, pp. 336-351.

Korotkov K.V., Gonen T., Hol W.G. Secretins: dynamic channels for protein transport across membranes. Trends Biochem Sci, 2011, vol. 8, no. 36, pp. 433-443.

Christie P.J., Atmakuri K., Krishnamoorthy V., Jakubowski S., Cascales E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol, 2005, no. 59, pp. 451-485.

Lawley T.D., Klimke W.A., Gubbins M.J., Frost L.S. F factor conjugation is a true type IV secretion system.FEMS Microbiol Lett, 2003, vol. 1, no. 224, pp. 1-15.

Thanassi D.G., Stathopoulos C., Karkal A., Li H. Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria (review).Mol Membr Biol, 2005, vol. 1, no. 22, pp. 63-72.

Gerlach R.G, Hensel M. Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens.Int J Med Microbiol, 2007, vol. 6, no. 297, pp. 401-415.

Cascales E. The type VI secretion toolkit.EMBO Rep, 2008, vol. 8, no. 9, pp. 735-41.

Coulthurst S.J. The Type VI secretion system - a widespread and versatile cell targeting system.Res Microbiol, 2013, vol. 6, no. 164, pp. 640-54.

Schertzer J.W, Whiteley M. Bacterial outer membrane vesicles in trafficking, communication and the host-pathogen interaction. J Mol Microbiol Biotechnol, 2013, vol. 1-2, no. 23, pp. 118-30.

Wong W.K., Ali A.B., Ma M.C. Cloning, expression, and characterization of diuretic hormone Manducadiuresin from Manducasexta in Escherichia coli. Protein Expr Purif, 2003, vol. 1, no. 29, pp. 51-57.

Park S.J., Georgiou G., Lee S.Y. Secretory production of recombinant protein by a high cell density culture of a protease negative mutant Escherichia coli strain. Biotechnol Prog, 1999, vol. 2, no. 15, pp. 164-167.

Tan S., Wu W., Liu J., Kong Y., Pu Y., Yuan R. Efficient expression and secretion of recombinant hirudin III in E. coli using the L-asparaginase II signal sequence. Protein Expr Purif, 2002, vol. 3, no. 25, pp. 430-436.

Uchida H., Naito N., Asada N., et al. Secretion of authentic 20-kDa human growth hormone (20K hGH) in Escherichia coli and properties of the purified product.J Biotechnol, 1997, vol. 2, no. 55, pp. 101-112.

Jeong K.J., Lee S.Y. Secretory production of human granulocyte colony-stimulating factor in Escherichia coli. Protein Expr Purif, 2001, vol. 2, no. 23, pp. 311-318.

Guisez Y., Fache I., Campfield L.A., et al. Efficient secretion of biologically active recombinant OB protein (leptin) in Escherichia coli, purification from the periplasm and characterization. Protein Expr Purif, 1998, vol. 2, no. 12, pp. 249-258.

Jeong K.J., Lee P.C., Park I.Y., Kim M.S., Kim S.C. Molecular cloning and characterization of an endoxylanase gene of Bacillus sp. in Escherichia coli. Enzyme Microb Technol, 1998, vol. 7, no. 22, pp. 599-605.

Jeong K.J., Lee S.Y. Secretory production of human leptin in Escherichia coli.Biotechnol Bioeng, 2000, vol. 4, no. 67, pp. 398-407.

Loo T., Patchett M.L., Norris G.E., Lott J.S. Using secretion to solve a solubility problem: high-yield expression in Escherichia coli and purification of the bacterial glycoamidase PNGase F.Protein Expr Purif, 2011, vol. 1, no. 24, pp. 90-98.

Winter J., Neubauer P., Glockshuber R., Rudolph R. Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA.J Biotechnol, 2001, vol. 2, no. 84, pp. 175-185.

Mergulhao F.J., Monteiro G.A., Larsson G., et al. Medium and copy number effects on the secretion of human proinsulin in Escherichia coli using the universal stress promoters uspA and uspB. Appl Microbiol Biotechnol, 2003, vol. 5, no. 61,pp. 495-501.

Jobling M.G., Palmer L.M., Erbe J.L., Holmes R.K. Construction and characterization of versatile cloning vectors for efficient delivery of native foreign proteins to the periplasm of Escherichia coli. Plasmid, 1997, vol. 3, no. 38,pp. 158-173.

Kaderbhai N., Karim A., Hankey W., Jenkins G., Venning J., Kaderbhai M.A. Glycine-induced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli.Biotechnol Appl Biochem, 1997, vol. 1, no. 25, pp. 53-61.

Choi J.H., Jeong K.J., Kim S.C., Lee S.Y. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence.Appl Microbiol Biotechnol, 2000, vol. 6, no. 53, pp. 640-645.

Xu R., Du P., Fan J.J., Zhang Q., Li T.P., Gan R.B. High-level expression and secretion of recombinant mouse endostatin by Escherichia coli. Protein Expr Purif, 2002, vol. 3, no. 24, pp. 453-459.

Inouye S. Process for production of proteins as soluble proteins. US Patent, no. 20070287171, 2007.

Lee S.J., Kim Y.O., Nam B.H. Production of a soluble native form of recombinant protein by the signal sequence and secretional enhancer. US Patent, no. 20090011995, 2009.

Shokri A., Sanden A.M., Larsson G. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli.Appl Microbiol Biotechnol, 2003, vol. 6, no. 60, pp. 654-664.

Kleist S., Miksch G., Hitzmann B., Arndt M., Friehs K., Flaschel E. Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Appl Microbiol Biotechnol, 2003, vol. 5-6, no. 61, pp. 456-462.

Orr V., Scharer J., Moo-Young M., et al. Integrated development of an effective bioprocess for extracellular production of penicillin G acylase in Escherichia coli and its subsequent one-step purification. J Biotechnol, 2012, vol. 1, no. 161,pp. 19-26.

Kuppusamy M., Srinivas V.K., Lahiri S., Ella K., Khatri G.S. DNA expression construct of a lambda promoter operationally linked to a DNA sequence encoding streptokinase; an amino acid sequence encoded by the DNA sequences; enzymatically active upon solubilization of the inclusion bodies. US Patent, no. 7105327, 2006.

Qian Z.G., Xia X.X., Choi J.H., Lee S.Y. Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli.Biotechnol Bioeng, 2008, Aug., vol. 3, no. 101, pp. 587-601.

Zhang G., Brokx S., Weiner J.H. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat Biotechnol, 2006, vol. 1, no. 24,pp. 100-104.