TRANSCRIPTIONAL RESPONSE OF THE MULTIDRUG RESISTANT Staphylococcus aureus FOLLOWING FS-1 EXPOSURE

Main Article Content

Authors

I.S. Korotetskiy

Scientific Center for Anti-infectious Drugs, 75V al-Farabi Ave., Almaty, 050060, Kazakhstan

S.V. Shilov

Scientific Center for Anti-infectious Drugs, 75V al-Farabi Ave., Almaty, 050060, Kazakhstan

S.V. Shvidko

Scientific Center for Anti-infectious Drugs, 75V al-Farabi Ave., Almaty, 050060, Kazakhstan

A.B. Jumagaziyeva

Scientific Center for Anti-infectious Drugs, 75V al-Farabi Ave., Almaty, 050060, Kazakhstan

N.A. Suldina

Scientific Center for Anti-infectious Drugs, 75V al-Farabi Ave., Almaty, 050060, Kazakhstan

N.V. Korotetskaya

Scientific Center for Anti-infectious Drugs, 75V al-Farabi Ave., Almaty, 050060, Kazakhstan

A.I. Ilin

Scientific Center for Anti-infectious Drugs, 75V al-Farabi Ave., Almaty, 050060, Kazakhstan

O.N. Reva

Department of Biochemistry, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa

Abstract

The aim of this study was to evaluate transcriptional regulation in a model multidrug resistant Staphylococcus aureus (MRSA) culture, S. aureus ATCC® BAA-39™, after exposure to a new antibacterial drug, FS-1. Growth media were supplemented with FS-1 at the end of the lag phase and in the middle of the exponential growth phase. To investigate the immediate effects of the iodine-containing antibacterial complex FS-1, 24 RNA samples were obtained 5 min after exposure to the drug.RNA sequencing revealed substantial changes in gene expression in the lag phase and, to a lesser degree, in the exponential growth phase. Analysis of the regulated genes suggested that FS-1 primarily targeted microbial cell wall proteins. The effect of FS-1 on S. aureus gene expression was similar, but not identical, to differential gene regulation profiles caused by several cell wall-disrupting antibiotics including bacitracin, D-cycloserine, and oxacillin. However, the gene regulation profiles were not completely congruent, suggesting that FS-1 displays a significant level of antimicrobial activity specificity. Therefore, it is possible that combining FS-1 with other anti-staphylococcal antibiotics will result in a cumulative synergetic effect.

Keywords

S. aureus, antibiotic resistance, FS-1, RNA, gene expression

Article Details

References

Racional'naja antibakterial'naja terapija tjazheloj grampolozhitel'noj infekcii. [Jelektronnyjresurs]. – Rezhim dostupa: URL.

MRSA: Vnutribol'nichnye infekciinalozhnom puti. [Jelektronnyjresurs]. – Rezhimdostupa: URL.

Trenozhnikova L.P., Fedorova G.B., Meka-Mechenko T.V., Hasenova A.H., Balgimbaeva A.S., ShakievS.Sh., Sagymbek U.A., Katruha G.S. Izuchenie antibiotika A-70 – kompleksnogo preparata jetamicinovoj gruppy, aktivnogo protiv klinicheskih kokkovyhvozbuditelejinfeckij s mnozhestvennoj associirovannoj lekarstvennoj ustojchivost'ju // Izvestija NAN RK. Serija biologicheskaja I medicinskaja. – Almaty, 2012, no. 1. – S. 51-53.

Ustojchivost' k antibiotikam – ser'eznaja ugroza obshhestvennomu zdravoohraneniju. [Jelektronnyj resurs]. – Rezhim dostupa: URL.

Antibiotikiibakterii: gonka vooruzhenij. [Jelektronnyj resurs]. – Rezhim dostupa: URL.

Agency for Toxic Substances and Disease Registry (ATSDR). 2004. toxicological Profile for Iodine. GA:U.S. Department of Health and Human Services // Public Health Service. Atlanta, 2004, 580 p.

GolovkoJu.S., Ivashkevich O.A., Golovko A.S. Sovremennye metody poiska novyh lekarstvennyh sredstv.Vestnik BGU. Ser. 2, 2012, no. 1,ss. 7-15.

Pokpovskij V.I., Onishhenko G.G., Chepkasskij B.L. Sovremennye predstavlenija ob infekcionnoj patologii I osnovnye napravlenija sovershenstvovanija stpategiie e profilaktiki. Vest. RAMN., 2000, no. 1, pp. 3-7.

Ilin A. I., Kulmanov M. E. (2014). Antibacterial Agent for Treating Infectious Diseases of Bacterial Origin.Patent US20140010782 A1 – 2014-09-03. Available online at: URL.

Ilin A.I., Kulmanov M.E., Korotetskiy I.S., et al. Genomic insight into mechanisms of reversion of antibiotic resistance in multidrug resistant Mycobacterium tuberculosis induced by a nanomolecular iodine-containing complex FS-1.Front. Cell. Infect. Microbiol., 2017,vol. 7:151. doi: 10.3389/fcimb.2017.00151.

M07-A9 Methods Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard – Ninth Edition, 2012,vol. 32, no. 2, 88 p.

Howden B.P., Beaume M., Harrison P.F., et al. Analysis of the small RNA transcriptional response in multidrug-resistant Staphylococcus aureus after antimicrobial exposure. Antimicrob Agents and Chemother.,2013,vol. 57, no. 8,pp. 3864-3874. doi: 10.1128/AAC.00263-13. PMID: 23733475.

Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. NCCLS, 1999,vol.19, no. 18, 32 p.

Baranyi J., Roberts T.A. A dynamic approach to predicting bacterial growth in food.Int. J. Food Microbiol.,1994,vol. 23, no. 3-4, pp. 277-294. PMID:7873331.

Inaoka T., Satomura T., Fujita Y., Ochi K. Novel gene regulation mediated by overproduction of secondary metabolite neotrehalosadiamine in Bacillus subtilis.FEMS Microbiol Lett., 2009, no. 291(2),pp. 151-156. doi: 10.1111/j.1574-6968.2008.01450.x. PMID: 19087206.

Ignatov D.V. Analiz transkriptom a Mycobacterium avium metodom shirokomasshtabnogo sekvenirovanija: avtoref. … kand. biol. nauk: 03.01.03: zashhishhena 04.12.13. – M., 2013. – 22 s.

Karp P.D., Latendresse M., Paley S.M., et al. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.Brief Bioinform., 2016, no. 17(5), pp. 877-890. PMID: 26454094. doi: 10.1093/bib/bbv079.

Leonova N.V. Study of the combined effect of antibacterial/antiviral agent FS-1 and antibiotics on Staphylococcus aureus in experiments in vitro. Meditsinskii Vestnik Erebuni, 2012,no. 1(49), pp. 54-60.

Sassi M., Augagneur Y., Mauro T., Ivain L., Chabelskaya S., Hallier M., Sallou O., Felden B. SRD: a Staphylococcus regulatory RNA database.RNA, 2015,no. 21(5), pp. 1005-1017. PMID: 25805861. doi: 10.1261/rna.049346.114.

Ibarra J.A., Pérez-Rueda E., Carroll R.K., Shaw L.N. Global analysis of transcriptional regulators in Staphylococcus aureus.BMC Genomics., 2013,no. 14, pp. 126. PMID: 23442205. doi: 10.1186/1471-2164-14-126.

Theis T., Skurray R.A., Brown M.H. Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR. J Microb Methods.,2007,no. 70(2),pp. 355-362. PMID: 17590462. doi: 10.1016/j.mimet.2007.05.011.

Vandecasteele S.J., Peetermans W.E., Merckx R., J. van Eldere. Quantification of Expression of Staphylococcus Epidermidis Housekeeping Genes with Taqman Quantitative PCR During In Vitro Growth and Under Different Conditions.J Bacteriol.,2001,no. 183(24),pp. 7094-7101. doi: 10.1128/JB.183.24.7094-7101.2001.

Anderson K.L., Roberts C., Disz T., Vonstein V., Hwang K., Overbeek R., Olson P.D., Projan S.J., Dunman P.M. Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover.J Bacteriol., 2006. no. 188(19), pp. 6739-6756. PMID: 16980476. doi: 10.1128/JB.00609-06.

Utaida S., Dunman P.M., Macapagal D., Murphy E., Projan S.J., Singh V.K., Jayaswal R.K., Wilkinson B.J. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology, 2003,no. 149, pp. 2719-2732. PMID: 14523105. doi: 10.1099/mic.0.26426-0.

Klochko V.V., Zelena L.B., Kim J.Y., Avdeeva L.V., Reva O.N. Prospects of a new antistaphylococcal drug batumin revealed by molecular docking and analysis of the complete genome sequence of the batumin-producer Pseudomonas batumici UCM B-321.Int J Antimicrob Agents., 2016,no. 47(1), pp. 56-61. PMID: 26607338. doi: 10.1016/j.ijantimicag.2015.10.006.