ANALYSIS OF THE GENETIC HOMOGENEITY OF Bacillus anthracis VACCINE STRAINS STI-1 AND B. anthracis 55-VNIIVViM BY MLVA-25

Main Article Content

Authors

A.D. Kairzhanova

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

T.B. Karibaev

National Reference Center for Veterinary Medicine, 22/3, 150 let Abaya str., Astana, 010000, Kazakhstan

V.B. Shvedyuk

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

S.B. Tyulegenov

National Reference Center for Veterinary Medicine, 22/3, 150 let Abaya str., Astana, 010000, Kazakhstan

M.K. Zharova

National Reference Center for Veterinary Medicine, 22/3, 150 let Abaya str., Astana, 010000, Kazakhstan

E.S. Shevtsova

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

M.A. Kuibagarov

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

А.B. Shevtsov

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

Abstract

Determining the genetic stability of the causative agent of anthrax requires analysis of highly variable regions of DNA, including tandem repeats. Analysis of 25 loci with tandem repeats (MLVA-25) is a highly discriminating method used to genotype field strains of Bacillus anthracis, and allows the geographical distribution of genotypes to be tracked. This method can be easily applied to control the genetic stability of vaccine strains and strain identification. However, to date, there is no data about the genotypes of MLVA-25 vaccine strains used for vaccination in countries of the Commonwealth of Independent States. Here, using MLVA-25, we genotyped vaccine strains of B. anthracis STI-1 and B. anthracis 55-VNIIVViM that were deposited by three individuals from Kazakhstan. MLVA profiles of the individual vaccine strains obtained were identical, irrespective of the source. B.anthracis STI-1 and B. anthracis 55-VNIIVViM differed only in a single tandem repeat at the pXO1aat locus. Comparison of MLVA profiles obtained in this study with those obtained by in silico analysis of whole genome data revealed a discrepancy at the Bam22 and Bam23 loci in both B. anthracis STI-1 and B. anthracis 55-VNIIVViM, and at the Bam5 and Bam24 loci of B. anthracis STI-1.This study shows that MLVA analysis is highly discriminatory and can be used for quality control analysis of vaccine preparations. Moreover, standardization of the procedure for commercial application would require the analysis of typical crops.

Keywords

Bacillus anthracis, MLVA typing, VNTR alleles, vaccine strains, anthrax

Article Details

References

Goel A.K. Anthrax: A disease of biowarfare and public health importance. World J.Clin Cases, 2015, vol.16, pp. 20-33. http:dx.doi.org/10.12998/wjcc.v3.i1.20.

WHO Guidelines Approved by the Guidelines Review Committee. Anthrax in Humans and Animals.4th edition. Geneva: World Health Organization, 2008.

Holtz T.H., Ackelsberg J., Kool J.L., et al. Isolated case of bioterrorism-related inhalational anthrax.New York City, 2001.Emerg. Infect. Dis.,2003, vol. 9, pp.689-696.

Akhtar P., Khan S.A.Two independent replicons can support replication of the anthrax toxin-encoding plasmid pXO1 of Bacillus anthracis. Plasmid, 2012, vol.67, pp.111-117. http: http:dx.doi.org/10.1016/j.plasmid.2011.12.012.

Fasanella A., Losito S., Trotta T., Adone R., Massa S., Ciuchini F. and Chiocco D. Detection of anthrax vaccine virulence factors by polymerase chain reaction. Vaccine, 2001, vol. 19, pp. 4214-4218.

Cataldi A., Mock M. and Bentancor L. Characterization of Bacillus anthracis strains used for vaccination. J. Appl. Microbiol., 2000, vol. 88, pp.648-654.

Bakulov I.A., Gavrilov V.A. Ocenka effectivnosty 10-letnego primenenia vacccini protiv sibirscoi yazvi zhivotnih iz shtamma 55- VNIIVVIM [Evaluation of the efficacy of a 10-year-old vaccine against anthrax from animals from strain ARSRIVVaM]. Vetenarya- Veterinary, 1994, no. 8, pp.11-15.

Leppla S.H., Klimpel K.R., Singh Y. Interaction of anthrax toxin with mammalian cells. Salisbury Medical Bulletin, 1996, no.87, p. 91.

Demicheli V. et al. (1998). The effectiveness and safety of vaccines against human anthrax.Vaccine,vol.16, pp.880-884.

URL (accessed 20 september 2017).

Van Ert M.N., Easterday W.R., Simonson T.S., et al. Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain. J.Clin.Microbiol.,2007, vol. 45, pp. 47-53.

Simonson T.S., Okinaka R.T., Wang B., Easterday W.R., Huynh L., U’Ren J.M, et al. Bacillus anthracis in China and its relationship to worldwide lineages. BMC Microbiol, 2009, vol. 9, p.71.

Keim P., PriceL.B., KlevytskaA.M., SmithK.L., SchuppJ.M., Okinaka R., JacksonP.J., and Hugh-JonesM.E. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J. Bacteriol.,2000, vol. 182, pp. 2928-2936.

Andersen G.L., Simchock J.M., Wilson K.H. Identification of a region of genetic variability among Bacillus anthracis strains and related species. J.Bacteriol., 1996, vol.178, pp.377-384.

Keim P., Van Ert M.N., Pearson T., Vogler A.J., Huynh L.Y., Wagner D.M. Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect Genet Evol.,2004, vol.4, pp.205-213.

Pearson T., Busch J.D., Ravel J., et al. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing. Proc. Natl. Acad. Sci. USA,2004, vol.101, pp.13536-13541.

Le Fleche P., Hauck Y., Onteniente L., et al. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis. BMC Microbiol, 2001, vol.1.

Lista F., Faggioni G., Valjevac S., Ciammaruconi A., et al. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci multiple locus variable-number tandem repeats analysis. BMC Microbiol.2006, vol. 6. http:dx.doi.org/10.1186/1471-2180-6-33.

MLVA web-service URL (accessed 20 september 2017).

Garcia-Yoldi D., Le Fleche P., Marin C.M., De Miguel M.J., Munoz P.M., Vergnaud G., López-Goni I. Assessment of genetic stability of Brucella melitensis Rev 1 vaccine strain by multiple-locus variable-number tandem repeat analysis.Vaccine, 2007, vol.12,pp.2858-2862.

Dorneles E.M., de Faria A.P., Pauletti R.B., Santana J.A., Caldeira G.A., Heinemann M.B., Titze-de-Almeida R., Lage A.P. Genetic stability of Brucella abortus S19 and RB51 vaccine strains by multiple locus variable number tandem repeat analysis (MLVA16). Vaccine, 2013, vol.1, pp.4856-4859.

Ramisse V., Patra G., Garrigue H., Guesdon J., Mock M. Identification and characterization of Bacillus anthracis by multiplex PCR analysis of sequences on plasmids pXO1 and pXO2 and chromosomal DNA. FEMS Microbiology Letters, 1996, vol.145, pp. 9-16.

Thorne C.B. Bacillus anthracis. Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, 1993, pp. 113-132.

Kolstø A.B., Tourasse N.J., Økstad O.A. What Sets Apart from Other Species?Annual Review of Microbiology, 2009, vol.63, pp.451-476. http:dx.doi.org 10.1146/annurev.micro.091208.073255.

Mock M., Fouet A. Anthrax. Annu. Rev. Microbiol.,2001, vol. 55, pp. 647-671.

Lindstedt B.A., Vardund T., Aas L., Kapperud G. Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. Enteric serovar Typhimurium using PCR multiplexing and multicolor capillary electrophoresis. J.Microbiol.Methods., 2004, vol. 59, pp. 163-172.

Pasqualotto A.C., Denning D.W., Anderson M.J. A cautionary tale: lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. J.Clin.Microbiol.,2007, vol. 9, pp. 522-528. http:dx.doi.org /10.1128/JCM.02136-06.

Thierry S., Tourterel C., Le Flèche P., Derzelle S., Dekhil N., Mendy C., Colaneri C., Vergnaud G., Madani N. Genotyping of French Bacillus anthracis strains based on 31-loci multi locus VNTR analysis: epidemiology, marker evaluation, and update of the internet genotype database. PLoS One, 2014, vol. 5. http:dx.doi.org 10.1371/journal.pone.0095131.