DISTURBANCES IN BLOOD RHEOLOGICAL PROPERTIES DURING PHENYLHYDRAZINE INTOXICATION AND THEIR CORRECTION WITH HYBRID MACROMOLECULAR COMPOUNDS IN RATS
Main Article Content
Authors
O. Aliev
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, pr. Lenina 3, Tomsk, 634050, Russia
A. Sidekhmenova
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, pr. Lenina 3, Tomsk, 634050, Russia
E. Popova
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, pr. Lenina 3, Tomsk, 634050, Russia
N. Domnina
Institute of Chemistry, St. Petersburg State University, 26 Universitetskii prospect, Petergof, St. Petersburg, 198504, Russia
P. Vlasov
Institute of Chemistry, St. Petersburg State University, 26 Universitetskii prospect, Petergof, St. Petersburg, 198504, Russia
M. Plotnikov
Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, pr. Lenina 3, Tomsk, 634050, Russia
Abstract
A single administration of phenylhydrazine at a dose of 50 mg/kg led to a decrease in hematocrit, impaired aggregation and deformability of erythrocytes, which manifested itself in a decrease in the efficiency of oxygen delivery to tissues. Hybrid macromolecular compounds (10 mg/kg intravenously daily for 4 days) attenuated hemorheological parameters disturbances and increased the efficiency of oxygen delivery to tissues.
Keywords
phenylhydrazine intoxication, hybrid macromolecular compounds, hematocrit, erythrocyte aggregation, erythrocyte deformability, oxygen delivery to tissues
Article Details
References
Sicińska P. Di-n-butyl phthalate, butylbenzyl phthalate and their metabolites induce haemolysis and eryptosis in human erythrocytes. Chemosphere, 2018, vol. 203, pp. 44–53.
Farag M.R., Alagawany M. Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem. Biol. Interact, 2018, vol. 5, pp. 73–83. doi: 10.1016/j.cbi.2017.11.007.
Arif A., Salam S., Mahmood R. Bioallethrin-induced generation of reactive species and oxidative damage in isolated human erythrocytes. Toxicol. In Vitro, 2020, vol. 22, pp. 104810. doi: 10.1016/j.tiv.2020.104810.
Shperling I.A., Riazantceva N.V., Novitckii V.V., Zhatkin O.A. Patologiia eritrotcita pri ekzogennoi intoksikatcii. Tomsk, Izd-vo Tom. un-ta, 2006, 122 s.
Berger J. Phenylhydrazine haematotoxicity. J. Appl. Biomed, 2007, vol. 5, pp. 125–130.
Shukla P., Yadav N.K., Singh P., Bansode F.W., Singh R.K. Phenylhydrazine induced toxicity: a review on its hematotoxicity. International Journal of Basic and Applied Medical Sciences, 2012, 2(2), pp.86–91.
Adebayo M.A., Enitan S.S., Owonikoko W.M., Igogo E., Ajeigbe K.O. Haematinic Properties of Methanolic Stem Bark and Fruit Extracts of Ficus Sur in Rats Pre-Exposed to Phenylhydrazine-Induced Haemolytic Anaemia. Afr. J. Biomed. Res, 2017, vol. 20, pp. 85–92.
Ousaaid D., Ghouizi A.E., Laaroussi H., et al Anti-Anemic Effect of Antioxidant-Rich Apple Vinegar against Phenylhydrazine-Induced Hemolytic Anemia in Rats. Life (Basel), 2022, 12(2), pp. 239. doi: 10.3390/life12020239. PMID: 35207526.
Lee H.W., Kim H., Ryuk J.A., Kil K.J., Ko B.S. Hemopoietic effect of extracts from constituent herbal medicines of Samul-tang on phenylhydrazine-induced hemolytic anemia in rats. Int J Clin Exp Pathol, 2014, vol. 7, pp. 6179–6185.
Aref'ev D., Belostotskaya I., Vol'еva V., et al Hybrid macromolecular antioxidants based on hydrophilic polymers and sterically hindered phenols. Russian Chemical Bulletin, 2007, 56(4), pp. 781–790. doi:10.1007/s11172-007-0117-x.
Popova E.V., Aliev O.I., Domnina N.S., Sergeeva O.Iu., Plotnikov M.B. Izuchenie gemoreologicheskoi aktivnosti gibridnykh makromolekuliarnykh soedinenii na modeli sindroma povyshennoi viazkosti krovi in vitro. Biomeditcinskii zhurnal. Medline.ru, 2012, T. 13, cc. 538–546.
Sidekhmenova A.V., Aliev O.I., Domnina N.S., et al A New In Vitro Blood Hyperviscosity Model. Bull Exp Biol Med, 2022, 172(4), pp. 504–506. doi: 10.1007/s10517-022-05423-4.
Belostotskaya I.S., Vol'eva V.B., Komissarova N.L., et al Synthesis and properties of macromolecular esters of carboxy-substituted derivatives of hindered phenols. Russian Journal of Organic Chemistry, 2010, 46(11), pp. 1646–1651. doi: 10.1134/S1070428010110060/
Sergeeva O.Iu., Domnina N.S., Khrustaleva R.S. i dr. Gibridnye makromolekuliarnye fenolnye antioksidanty. Svoistva i primenenie v meditcine. VII mezhdunar. simp. po fenolnym soedineniiam: fundamentalnye i prikladnye aspekty. M., 2009, ss.245–246.
Stoltz J.E., Donner M. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile. Schweiz. Med. Wochenschr, 1991, vol. 43, pp. 41–49.
Cary R., Dobson S., Brooke I. Phenilhydrazine World Health Organization Geneva, 2000, P. 27.
Sloop G., Holsworth R.E. Jr., Weidman J.J., St Cyr J.A. The role of chronic hyperviscosity in vascular disease. Ther Adv Cardiovasc Dis, 2015, 9(1), pp. 19–25. doi:10.1177/1753944714553226.
Banerjee A., Dey T., Ghosh A.K., Mishra S., Bandyopadhyay D., Chattopadhyay A. Insights into the ameliorative effect of oleic acid in rejuvenating phenylhydrazine induced oxidative stress mediated morpho-functionally dismantled erythrocytes. Toxicol Rep, 2020, vol.7, pp. 1551–1563. doi: 10.1016/j.toxrep.2020.10.022.
Paul S., Ghosh A.K., Ghosh D., et al Aqueous bark extract of Terminalia arjuna protects against phenylhydrazine induced oxidative damage in goat red blood cell membrane protein, phospholipid asymmetry and structural morphology: a flow cytometric and biochemical analysis. J. Pharm. Res, 2014, 8(12), pp. 1790–1804.
Plotnikov M.B., Аliev O.I., Maslov M.Yu., Vasiliev A.S., Tjukavkina N.A. Correction of the high blood viscosity syndrome by a mixture of diquertin and ascorbic acid in vitro and in vivo. Phytother. Res, 2003, vol. 17, pp. 276–278. doi: 10.1002/ptr.1113.
Plotnikov M.B., Aliev O.I., Sidekhmenova A.V., et al Synthesis and antiradical and hemorheological activity of compounds based on 2,6-diisobornyl-4-methylphenol and polysaccharides. Pharmaceutical Chemistry Journal, 2018, 51(10), pp. 863–866. doi: 10.1007/s11094-018-1705-9.
Ruta L.L., Farcasanu I.C. Interaction between Polyphenolic Antioxidants and Saccharomyces cerevisiae Cells Defective in Heavy Metal Transport across the Plasma Membrane. Biomolecules, 2020, 10(11), p. 1512. doi: 10.3390/biom10111512.
Cadenas E., Packer L. Handbook of Antioxidants. New York, 2002, 712 p.
Filippov S.K., Domnina N., Vol'eva V. Future and the past of polymeric antioxidants. Polym Adv Technol, 2021, 32, pp. 2655–2668. doi:10.1002/pat.5203.
Filippov S.K., Porsch B., Sergeeva O.Y., et al Molecular properties of hybrid macromolecular antioxidants: dextran hydrophobically modified by sterically hindered phenols. The European Physical Journal E, 2011, 34(11), pp. 123–132. doi: 10.1140/epje/i2011-11123-7.