THE EFFECT OF THE IODINE-CONTAINING COMPOUNDS ON GENE EXPRESSION OF PATHOGENIC MICROORGANISMS
Main Article Content
Authors
Abstract
The global increase in multidrug resistance highlights the need for new, effective antimicrobial agents. Iodine-containing complexes, due to their broad-spectrum antimicrobial properties, low likelihood of resistance development, and stability under various conditions, represent a promising avenue for the development of innovative therapeutic approaches.
The aim of this study was to collect and analyze research assessing the impact of iodine-containing complexes with organic ligands on the gene expression of certain pathogenic strains of microorganisms with multidrug resistance. Bioinformatics approaches were employed to investigate gene expression, protein interactions, and metabolic pathways, utilizing tools like STRING, KEGG, Reactome, and UniProt. Models of gene and proteome interaction analysis were also used to interpret the data.
Key findings include the suppression of central metabolic cycles, such as the tricarboxylic acid cycle (TCA), increased glycolytic activity, a shift in metabolism toward anaerobic respiration, and activation of oxidative stress defense systems. The study also highlights changes in gene expression associated with membrane remodeling, DNA repair, regulation of virulence factors, and nutrient transport. These adaptive responses reflect the multifaceted antimicrobial action of iodine-containing complexes, which target key cellular components and processes, making them highly effective against multidrug-resistant pathogens.
Iodine-containing complexes exhibit high antimicrobial potential due to their ability to disrupt essential bacterial life processes, impairing metabolism, structure, and adaptive mechanisms. Further research into the molecular mechanisms of iodine’s action and its effects on pathogen virulence could open new avenues for addressing the challenge of antibiotic resistance.
Keywords
pathogenic microorganisms, multidrug resistance, gene expression, iodine-containing compounds, mechanism of action, central metabolism
Article Details
References
GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050 // Lancet. – 2024. – Vol. 404, № 10459. – P. 1199-1226. doi: 10.1016/S0140-6736(24)01867-1.
Bush K., Courvalin P., Dantas G., Davies J., Eisenstein B., Huovinen P., Jacoby G.A., Kishony R., Kreiswirth B.N., Kutter E., et al. Tackling antibiotic resistance // Nature Reviews Microbiology. – 2011. – Vol. 9. – P. 894–896.
Lomazzi M., Moore M., Johnson A., Balasegaram M., Borisch B. Antimicrobial resistance–moving forward? // BMC Public Health. – 2019. – Vol. 19. – P. 1–6. doi: 10.1186/s12889-019-7173-7.
Adam M., Murali B., Glenn N.O., Potter S.S. Epigenetic inheritance based evolution of antibiotic resistance in bacteria // BMC Evol. Biol. – 2008. – Vol. 8. – P. 52. doi: 10.1186/1471-2148-8-52.
Årdal C., Balasegaram M., Laxminarayan R., McAdams D., Outterson K., Rex J.H., Sumpradit N. Antibiotic development—Economic, regulatory and societal challenges // Nat. Rev. Microbiol. – 2020. – Vol. 18. – P. 267–274.
Kaushik S. Editorial: Reviews in antibiotic resistance and new antimicrobial drugs // Front. Cell. Infect. Microbiol. – 2024. – Vol. 14. – P. 1434140. doi: 10.3389/fcimb.2024.1434140.
Mahmud H.A., Wakeman C.A. Navigating collateral sensitivity: insights into the mechanisms and applications of antibiotic resistance trade-offs // Front. Microbiol. – 2024. – Vol. 15. – P. 1478789. doi: 10.3389/fmicb.2024.1478789.
Schaenzer A.J., Wright G.D. Antibiotic resistance by enzymatic modification of antibiotic targets // Trends Mol. Med. – 2020. – Vol. 26. – P. 768–782. doi: 10.1016/j.molmed.2020.05.001.
Reygaert W.C. An overview of the antimicrobial resistance mechanisms of bacteria // AIMS Microbiol. – 2018. – Vol. 4. – P. 482–501. doi: 10.3934/microbiol.2018.3.482.
Yаkovlev V.P., Yаkovlev S.V. Perspektivy sozdaniya i vnedreniya novyh antimikrobnyh preparatov // Infekcii i antimikrobnaya terapiya. – 2002. – Vol. 4, – 2. – P. 46–49.
Moo C.L., Yang S.K., Yusoff K., Ajat M., Thomas W., Abushelaibi A., et al. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR // Curr. Drug Discovery Technol. – 2020. – Т. 17. – С. 430–447. doi: 10.2174/1570163816666190304122219.
Nevezhina A.V., Fadeeva T.V. Antimikrobnyj potencial jodsoderzhashchih veshchestv i materialov // Acta biomedica scientifica. – 2023. – Vol. 8, № 5. – P. 36–49.
Skal'naya M.G. Jod: biologicheskaya rol' i znachenie dlya medicinskoj praktiki // Mikroelementy v medicine. – 2018. – Vol. 19, № 2. – P. 3–11.
Block S.S. Disinfection, sterilization, and preservation. 5th ed. — Philadelphia: Lippincott Williams & Wilkins, – 2001. – P. 1480.
McDonnell G., Russell A.D. Antiseptics and disinfectants: activity, action, and resistance // Clin. Microbiol. Rev. – 1999. – Vol. 12. № 1. – P. 147–179.
Monstrey S. J., Govaers K., Lejuste P., Lepelletier D., Ribeiro de Oliveira P. Evaluation of the role of povidone iodine in the prevention of surgical site infections // Surg Open Sci. – 2023. – Vol. 13. – P. 9–17. DOI: 10.1016/j.sopen.2023.03.005. PMID: 37034245; PMCID: PMC10074992.
Makhayeva D. N., Irmukhametova G. S., Khutoryanskiy V. V. Polymeric Iodophors: Preparation, Properties, and Biomedical Applications // Review Journal of Chemistry. – 2020. – Vol. 10. №1. – P. 1–16.
Monstrey S. J. Commentary: Addressing the challenges in antisepsis: Focus on povidone iodine // Journal of Dermatology and Skin Science. – 2022. – Vol. 4. № 3. – P. 14–16. DOI: 10.29245/2767-5092/2022/3.1159.
Nevezhina A.V., Fadeeva T.V. Antimikrobnyj potencial jodsoderzhashchih veshchestv i materialov // Acta biomedica scientifica. – 2023. – Vol. 8, № 5. – P. 36–49.
Köntös Z., et al. Efficacy of "Essential Iodine Drops" against Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) // PLOS ONE. – 2021. – Vol. 16. №7. e0254341.
Wen X., et al. Potassium Iodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in In Vitro and In Vivo Studies // Antimicrobial Agents and Chemotherapy. – 2017. – Vol. 61. №5. e02732-16.
Wade R. G., Burr N. E., McCauley G., Bourke G., Efthimiou O. The Comparative Efficacy of Chlorhexidine Gluconate and Povidone-iodine Antiseptics for the Prevention of Infection in Clean Surgery: A Systematic Review and Network Meta-analysis // Ann Surg. – 2021. – Vol. 274. № 6. – P. e481–e488. DOI: 10.1097/SLA.0000000000004076.
Clarivate. URL: URL
Scopus. URL: URL
National Center for Biotechnology Information (NCBI) [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] – [cited 2017 Apr 06]. Available from: URL
ScienceDirect. URL: URL
Mendeley. URL: URL
National Center for Biotechnology Information (NCBI) [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; [1988] – [cited 2017 Apr 06]. Available from: URL
The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023 // Nucleic Acids Research. – 2023. – Vol. 51, Issue D1. – P. D523–D531. DOI: Crossref
RCSB PDB. URL: URL
STRING. URL: URL
Kanehisa M., Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes // Nucleic Acids Res. – 2000. – Vol. 28. – P. 27-30. DOI: 10.1093/nar/28.1.27
Kanehisa M. Toward understanding the origin and evolution of cellular organisms // Protein Sci. – 2019. – Vol. 28. – P. 1947-1951. DOI: 10.1002/pro.3715
Kanehisa M., Furumichi M., Sato Y., Kawashima M., Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes // Nucleic Acids Res. – 2023. – Vol. 51. – P. D587-D592. DOI: 10.1093/nar/gkac963
Milacic M., Beavers D., Conley P., Gong C., Gillespie M., Griss J., Haw R., Jassal B., Matthews L., May B., Petryszak R., Ragueneau E., Rothfels K., Sevilla C., Shamovsky V., Stephan R., Tiwari K., Varusai T., Weiser J., Wright A., Wu G., Stein L., Hermjakob H., D’Eustachio P. The Reactome Pathway Knowledgebase 2024 // Nucleic Acids Research. – 2024. DOI: 10.1093/nar/gkad1025.
Zdobnov E. M., Kuznetsov D., Tegenfeldt F., Manni M., Berkeley M., Kriventseva E. V. OrthoDB in 2020: evolutionary and functional annotations of orthologs // Nucleic Acids Research. – 2021. – Vol. 49, Issue D1. – P. D389–D393. DOI: Crossref
Reva O. N., Korotetskiy I. S., Joubert M., Shilov S. V., Jumagaziyeva A. B., Suldina N. A., Ilin A. I. The Effect of Iodine-Containing Nano-Micelles, FS-1, on Antibiotic Resistance, Gene Expression and Epigenetic Modifications in the Genome of Multidrug Resistant MRSA Strain Staphylococcus aureus ATCC BAA-39 // Front Microbiol. – 2020. – Vol. 11. – P. 581-660. DOI: 10.3389/fmicb.2020.581660. PMID: 33193215; PMCID: PMC7642360.
Kenesheva S. T., Taukobong S., Shilov S. V., Kuznetsova T. V., Jumagaziyeva A. B., Karpenyuk T. A., Reva O. N., Ilin A. I. The Effect of Three Complexes of Iodine with Amino Acids on Gene Expression of Model Antibiotic Resistant Microorganisms Escherichia coli ATCC BAA-196 and Staphylococcus aureus ATCC BAA-39 // Microorganisms. – 2023. – Vol. 11, No. 7. – P. 1705. DOI: Crossref.
Korotetskiy I. S., Shilov S. V., Kuznetsova T. V., Ilin A. I., Joubert M., Taukobong S., Reva O. N. Comparison of transcriptional responses and metabolic alterations in three multidrug-resistant model microorganisms, Staphylococcus aureus ATCC BAA-39, Escherichia coli ATCC BAA-196, and Acinetobacter baumannii ATCC BAA-1790, on exposure to iodine-containing nano-micelle drug FS-1 // mSystems. – 2021. – Vol. 6. – P. e01293-20. [CrossRef]
Korotetskiy I. S., Jumagaziyeva A. B., Shilov S. V., Kuznetsova T. V., Myrzabayeva A. N., Iskakbayeva Z. A., Ilin A. I., Joubert M., Taukobong S., Reva O. N. Transcriptomics and methylomics study on the effect of iodine-containing drug FS-1 on Escherichia coli ATCC BAA-196 // Future Microbiol. – 2021. – Vol. 16. – P. 1063–1085.