BIOCHEMICAL CHARACTERIZATION OF XTHA AP-ENDONUCLEASE FROM HELICOBACTER PYLORI

Main Article Content

Authors

A.M. Turgimbaeva

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan
L.N. Gumilyov Eurasian National University, Satpayev Street, 2, Astana, 010000, Kazakhstan

S.K. Abeldenov

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

M.K. Saparbayev

Institute of Gustav Roussy, CNRS UMR 8200, 114 Rue Edouard Vaillant, Villejuif, 94805, France

Y.M. Ramankulov

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

B.B. Khassenov

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

Abstract

About 50% of world population is infected by pathogenic bacterium Helicobacter pylori. During persistence in the human body, this microorganism encounters negative effects of reactive oxygen and nitrogen species (ROS, RNS) generated by neutrophils and macrophages, which damage bacterial DNA. Consequently, microorganism triggers a mechanism for eliminating DNA damages that is carried out by DNA repair enzymes. Base excision repair (BER) is one of the ways of DNA repair to eliminate oxidized, deaminated and alkylated nitrogenous bases. The key enzymes of BER are apurinic/apyrimidinic endonucleases (AP-endonucleases).

In this article research results of DNA repair activity of XthA AP-endonuclease from H. pylori (HpXthA) are presented. The optimal reaction conditions were determined for verifying the repair activity of HpXthA in vitro: low ionic strength, high concentration of Mg2+, pH 7-8 and 30°C incubation temperature. Kinetic parameters of AP-endonuclease, 3¢-phosphodiesterase and 3¢-phosphatase activity of HpXthA have been determined (kcat/KM = 1240, 44 and 5.4 µM-1·min-1, respectively).

Keywords

base excision repair, Helicobacter pylori, AP-endonuclease, AP-site, oxidative stress, oxidized DNA damage

Article Details

References

Bauer B., Meyer T.F., Bauer B., Meyer T.F. The human gastric pathogen Helicobacter pylori and its association with gastric cancer and ulcer disease. Ulcers, 2011, vol. 2011, pp. 1-23.

Benberin V., Bektayeva R., Karabayeva R., Lebedev A., Akemeyeva K., Paloheimo L., Syrjänen K. Prevalence of H. pylori infection and atrophic gastritis among symptomatic and dyspeptic adults in Kazakhstan. A hospital-based screening study using a panel of serum biomarkers. Anticancer Res., 2013, vol. 33, no. 10, pp. 4595-4602.

Eusebi L.H., Zagari R.M., Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter, 2014, vol. 19, no. S1. pp. 1-5.

Park J.Y., Greenberg E. R., Parsonnet J., Wild C.P., Forman D. Summary of IARC working group meeting on Helicobacter pylori eradication as a strategy for preventing gastric cancer. IARC Working Group Reports, 2014, vol.8, pp. 1-181.

Sibille Y., Reynolds H.Y. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am. Rev. Respir. Dis., 1990, vol. 141, no. 2, pp. 471-501.

Fialkow L., Wang Y., Downey G.P. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic. Biol. Med., 2007, vol. 42, no. 2, pp. 153-164.

Wiseman H., Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J., 1996, vol. 313, pp. 17-29.

Hampton M.B., Kettle A.J., Winterbourn C.C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood., 1998, vol. 92, no. 9, pp. 3007-3017.

Goldblatt D., Thrasher A.J. Chronic granulomatous disease. Clin. Exp. Immunol., 2000, vol. 122, no. 1, pp. 1-9.

Baute J., Depicker A. Base excision repair and its role in maintaining genome stability. Crit. Rev. Biochem. Mol. Biol., 2008, vol. 43, no. 4, pp. 239-276.

Lindahl T. Instability and decay of the primary structure of DNA. Nature, 1993, vol. 362, pp. 709-715.

Loeb L.A. Apurinic sites as mutagenic intermediates. Cell, 1985, vol. 40, no. 3, pp. 483-484.

Turgimbaeva A.M., Abeldenov S.K., Akhmetova D.G., Saparbayev M.K., Ramankulov Y.M., Khassenov B.B. Features of DNA repair mechanisms of man-infecting bacterial pathogens. Eurasian J. Appl. Biotechnol., 2017, vol. 2., pp. 56-63.

A Ambur O.H., Davidsen T., Frye S.A., Balasingham S.V., Lagesen K., Rognes T., Tønjum T. Genome dynamics in major bacterial pathogens. FEMS Microbiol. Rev., 2009, vol. 33, no. 3, pp. 453-470.

Abeldenov S., Khassenov B. Cloning, expression and purification of recombinant analog of Taq DNA polymerase. Biotechnology. Theory and practice, 2014, no. 1, pp. 12-16.

Maniatis T.F., Fritsch E.F., Sambrook J. Molecular cloning. A laboratory manual. New York: Cold Spring Harbor Laboratory, 1982, 545 p.

Joldybayeva B., Prorok P., Grin I.R., Zharkov D.O., Ishenko A.A., Tudek B., Bissenbaev A.K., Saparbaev M. Cloning and characterization of a wheat homologue of apurinic/apyrimidinic endonuclease Ape1L. PLoS One, 2014, vol. 9, no. 3, p. e92963.

Ishchenko A.A., Sanz G., Privezentzev V.C., Maksimenko A.V., Murat Saparbaev M. Characterisation of new substrate specificities of Escherichia coli and Saccharomyces cerevisiae AP endonucleases. Nucleic Acids Res., 2003, vol. 31, no. 21, pp. 6344-6353.

Abeldenov S., Talhaoui I., Zharkov D.O., Ishchenko A.A., Ramanculov E., Saparbaev M., Khassenov B. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis. DNA Repair, 2015, vol. 33. pp. 1-16.

Takeshita M., Chang C.N., Johnson F., Will S., Grollman A.P. Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J Biol Chem., 1987, vol. 262, no. 21, pp. 10171-10179.

Kane C.M., Linn S. Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J. Biol. Chem., 1981, vol. 256, no. 7, pp. 3405-3414.

Rogers S.G., Weiss B. Exonuclease III of Escherichia coli K-12, an AP endonuclease. Methods Enzymol., 1980, vol. 65, pp. 201–211.

Mathieu A., O’Rourke E.J., Radicella J.P. Helicobacter pylori genes involved in avoidance of mutations induced by 8-oxoguanine. J. Bacteriol., 2006, vol. 188, no. 21, pp. 7464-7469.

Gros L., Ishchenko A.A., Ide H., Elder R.H., Saparbaev M.K. The major human AP endonuclease (Ape1) is involved in the nucleotide incision repair pathway. Nucleic Acids Res., 2004, vol. 32, no. 1, pp. 73-81.

Tsutakawa S.E., Shin D.S., Mol C.D., Izumi T., Arvai A.S., Mantha A.K., Szczesny B., Ivanov I.N., Hosfield D.J., Maiti B., Pique M.E., Frankel K.A., Hitomi K., Cunningham R.P., Mitra S. T. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes. J. Biol. Chem., 2013, vol. 288, no. 12, pp. 8445-8455.

Mol C.D., Izumi T., Mitra S., Tainer J.A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature, 2000, vol. 403, no 6768, pp. 451-456.

Wong D., DeMott M.S., Demple B. Modulation of the 3′→5′-exonuclease activity of human apurinic endonuclease (Ape1) by its 5′-incised abasic DNA product. The journal of biological chemistry, 2003, vol. 278, no. 38, pp. 36242-36249.

Cunningham R.P., Weiss B. Endonuclease III (nth) mutants of Escherichia coli. PNAS, 1985, vol. 82, no. 2, pp. 474-478.

Blaisdell J.O., Wallace S.S. Abortive base-excision repair of radiation-induced clustered DNA lesions in Escherichia coli. PNAS, 2001, vol. 98, no. 13, pp. 7426-7430.

Thomas D., Scot A.D., Barbey R., Padula M. B. Inactivation of OGG1 increases the incidence of G •C→T •A transversions in Saccharomyces cerevisiae: Evidence for endogenous oxidative damage to DNA in eukaryotic cells. Mol. Gen. Genet., 1997, vol. 254, no 2, pp. 171-178.

Alseth I., Eide L., Pirovano M., Rognes T., Seeberg E., Bjørås M. The Saccharomyces cerevisiae homologues of endonuclease III from Escherichia coli, Ntg1 and Ntg2, are both required for efficient repair of spontaneous and induced oxidative DNA damage in yeast. Mol. Cell. Biol., 1999, vol. 19, no. 5, pp. 3779-3787.

Ischenko A.A., Saparbaev M.K. Alternative nucleotide incision repair pathway for oxidative DNA damage. Nature, 2002, vol. 415, pp. 183-187.

Takeuchi M., Lillis R., Demple B., Takeshita M. Interactions of Escherichia coli endonuclease IV and exonuclease III with abasic sites in DNA. J. Biol. Chem., 1994, vol. 269, nj. 34, pp. 21907-21914.