Main Article Content


Zh.T. Niyazbekova

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

G.Zh. Nagmetova

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

A.A. Kurmanbayev

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan


Biocellulose is a strong polymer consisting of nanofibrillar structures causing a large specific surface area and a microporous structure. This, in turn, creates ample opportunities for its modification, and, consequently, the production of various composite materials with significantly better characteristics. Unlike plant cellulose, bacterial doesn’t contain lignin and hemicellulose and, accordingly, is fairly pure, neutral and biocompatible. In addition, bacterial cellulose is non-toxic, a biodegradable polymer that is inert to human metabolism.

Biocellulose is a valuable biopolymer for the production of food, textiles, medicine, and agriculture due to its unique properties. Microbial cellulose is synthesized by representatives of the genera Agrobacterium, Achromobacter, Aerobacter, Enterobacter, Sarcina, Rhizobium, Pseudomonas, Salmonella, Alcaligenes and Myxedema. But the classic producer of this material is bacteria of the genus Komagataeibacter: Komagataeibacter xylinus, Komagataeibacter hansenii, Komagataeibacter kombuchae, Komagataeibacter intermedius. This review article presents the current information about of biocellulose based on previous work that has been carried out to improve the production of biocellulose and the possibility of its application in various fields of activity. The physicochemical properties of biocellulose are discussed. Current and potential applications of the biopolymer in the textile and pharmacological industry, cosmetology are presented.


biocellulose, bacterial cellulose, biopolymer, Komagataeibacter, gel film

Article Details


Fan Mi Han, Gromovih T.I. Production of bacterial cellulose by microbiological synthesis. Vestnik of Russian academic академии agricultural sciences, 2012, no. 5, pp. 67-68.

R. Prashnt B., Ishwar A., Shrikant S., Suruase and Rekha S. Singhal. Microbial Cellulose: Fermentative Production and Applications. Food Technol. Biotechnol. J, 2009, vol. 47 (2), pp. 107-124.

Vitta S., Thiruvengadam V. Multifunctional bacterial cellulose and nanoparticle-embedded composites. Current science, 2012, vol. 102 (10), pp. 1398-1405.

Yamada Y., Yukphan P., Vu H.T.L., Muramatsu Y., Ochaikul D., Tanasupawat S., Nakagawa Y. Description of Komagataeibacter gen. nov., with proposal of new combinations (Acetobacteraceae). J. Gen. Microbiol, 2012, vol. 58, pp. 397-404.

Nogi M., Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater, 2009, vol. 20, p. 1849.

Esguerra M., Fink H., Laschke M.W., Delbro D., Jeppsson A., Gate B. Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res, 2010, part A, vol. 93, pp. 140-149.

Avery N.C., Sims T.J., Warkup C., Bailey A.J. Collagen cross-linking in porcine m. longissimus lumborum: absence of a relationship with variation in texture at pork weight. Meat Sci, 2007, vol. 42, pp. 355-369.

Shah J., Brown M.R.J.R. Towards electronic paper. Appl. Microbiol. Biotechnol, 2005, vol. 66, pp. 352-355.

Ślęzak A., Kucharzewski M., Jasik-Ślęzak J. The characteristics of medical dressings bacterial cellulose membrane. Available at: URL (accessed 2016).

Baptista A., Ferreira I., Borges J. Cellulose-Based Bioelectronic Devices. Cellulose - Medical, Pharmaceutical and Electronic Applications, 2016, pp. 67-82. Crossref.

Almeida I.F., Pereira T., Silva N.H.C.S., Gomes F.P., Silvestre A.J.D., Freire C.S.R., Sousa Lobo J.M., Costa P.C. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. European Journal of Pharmaceutics and Biopharmaceutics, 2014, vol. 86, pp. 332-336. Crossref.

Donaldson L. Nanosystem for effectively targeting glioblastoma: Biomaterials. Materials today, 2011, vol. 14, no. 12, p. 576.

Amnuaikit T., Chusuit T., Raknam P., Boonme P. Effects ofa cellulose mask synthesized by a bacterium on facial skin characteristics and user satisfaction. Med Devices, 2011, vol. 4, pp. 77-81.

Legendre J.Y. Assembly comprising a substrate comprising biocellulose, and a powdered cosmetic composition to be brought into contact with the substrate. Patent US, no. 20090041815 A1, 2008.

Lee C.K., Hsu K.C., Cho J.C., Kim Y.J., Han S.H. Cosmetic bio-cellulose mask pack sheet and method for manufacturing same. Patent US, no. 20130244977 A1, 2011.

Jain P., Gupta C. Textile recycling practices in Índia: a review. International Journal of Textile and Fashion Technology, 2016, no. 6, pp. 21-36.

Ortolano L., Sanchez-Triana E., Afzal J., Ali C.L., Rebellón S.A. (2014). Cleaner production in Pakistan’s leather and textile sectors. Journal of Cleaner Production, 2014, vol. 68, pp. 121-129. URL.

BioCouture by Suzanne Lee. Available at: URL (accessed 10 August 2011).

Tome´ L.C., Branda˜o L., Mendes A.M., Silvestre A.J., Neto C.P., Gandini A., Freire C.S., Marrucho I.M. Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose, 2010, vol. 17, pp. 1203-1211.

Almeida I.F., Pereira T., Silva N.H.C.S., Gomes F.P., Silvestre A.J.D., Freire C.S.R., et al. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. European Journal of Pharmaceutics and Biopharmaceutics, 2014, vol. 86, pp. 332-336.

Busuioc C., Stroescu M., Stoica-Guzun A., Voicu G., & Jinga S.I. Fabrication of 3D calcium phosphates based scaffolds using bacterial celluloseas template. Ceramics International, 2016, vol. 42, pp. 15449-15458.

Habibi Y., Lucia L.A., Rojas O.J. Cellulose nanocrystals chemistry, self-assembly, and applications. Chem. Rev, 2010, vol. 110, рр. 3479-3500.

Rebouillat S., Pla F. State of the Art Manufacturing and Engineering of Nanocellulose: A review of Available Data and Industring applications. Journal of Biomaterials and Nanotechnology, 2013, vol. 4, рр. 165-188.

Ioelovich M., Leykin A. Nanocellulose and its application. J. Scientific Israel – Technological Advantages, 2014, vol. 6, vol. 3-4, pр. 17-25.

Everglide s-500 Professional Gaming Headphones. Available at: URL (accessed 17 December 2006).

New biosensing platform could quickly and accurately diagnose disease and monitor treatment remotely. Available at: URL (accessed 6 April 2006).

Biotweaking (2013). Available at: URL (accessed May 2013).

Wu S.C., Lia Y.K. Application of bacterial cellulose pellets in enzyme immobilization. J Mol Catal B Enzym, 2008, vol. 54, pp. 103-108.

Fernandes P. Enzymes in food processing: a condensed overview on strategies for better biocatalysts. Enzyme Res, 2010, pp. 19, ID 862537. http://doi:10.4061/2010/862537.

Khan S., Ul-Islam M., Khattak W.A., Ullah M.W., Park J.K. Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose, 2015, vol. 22, pp. 565-579.

Xiaobing Liu et al. Soy protein isolate bacterial cellulose composite membranes for high efficiency particulate air filtration. Composites Science and Technology, 2017, vol. 138, pp. 124-133. Crossref.

Phisalaphong M., Chiaoprakobkij N. Applications and products – nata de coco bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, 2013, pp. 143-155.

Okiyama A., Motoki M., Yamanaka S. Bacterial cellulose IV. Application to processed foods. Food Hydroco, 2008, vol. 116, pp. 503-511.

Phan My Hanh, Gromovykh T.I., Byryukov G.S., Danilchuk T.N., Abdrashidova G.G. Express-method to determine bacterial cellulose productivity by Gluconacetobacter hansenii GH -1. Nauka i studia, Nauk Biologic znych Medicyna weterinaria, 2012, vol. 22 (67), рp. 14-22.

Chen L., Zou M., Hong F.F. Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose. Front Microbiol, 2015, vol. 6, p. 1245.