Optimization of Conditions for The Multiplex PCR for Diagnostics of Horse Strangles with Subspecies Differentiation of Streptococcus Equi Subsp Equi

Main Article Content


K.T. Berdimuratova

National Center for Biotechnology, 13/5, Kurgalzhyn road, Nur-Sultan, 010000, Kazakhstan

R. Makhamed

National Center for Biotechnology, 13/5, Kurgalzhyn road, Nur-Sultan, 010000, Kazakhstan

A.B. Shevtsov

National Center for Biotechnology, 13/5, Kurgalzhyn road, Nur-Sultan, 010000, Kazakhstan


As a result of the work performed, the conditions for setting up multiplex PCR with electrophoretic detection for the diagnosis of horse strangles were determined, allowing the identification and differentiation of S. equi subsp. equi in one reaction. It was found that the developed PCR protocol for the detection and species differentiation of S. equi subsp. equi with electrophoretic detection in a “multiplex” format has a high specificity and does not lead to amplification of PCR products with DNA of closely related microorganisms, saprophytic microflora, and bacterial pathogens. The sensitivity of the protocols for the detection and species differentiation of S. equi subsp. equi with electrophoretic detection was assessed. Diluted DNA samples of two S. equi subspecies were used as objects of research: S. equi subsp. equi and S. equi subsp. zooepidemicus. DNA samples were diluted by two-fold dilutions, starting from a concentration of 5 ng (which corresponds to 2 million 170 thousand copies in the genomic equivalent) to 1.19 * 10-6 ng (which corresponds to 0.71 copies in the genomic equivalent). DNA detection limit for S. equi subsp. equi was 66 copies in genomic equivalent or 152 fg, DNA of S. equi subsp. zooepidemicus – 132 copies in genomic equivalent or 305 fg.


horse strangles, multiplex PCR, sensitivity, specificity, optimization

Article Details


Boyle A.G., Rankin S.C., Duffee L., Boston R.C., Wheeler‐Aceto H. Streptococcus equi Detection Polymerase Chain Reaction Assay for Equine Nasopharyngeal and Guttural Pouch Wash Samples. J Vet Intern Med, 2016, vol. 30, no. 1, рр. 276–281. Crossref.

Timoney J.F., Kumar P. Early pathogenesis of equine Streptococcus equi infection (strangles). Equine Vet. J, 2008, vol.40, рр. 637-642.

Jorm L.R., Love D.N., Bailey G.D., McKay G.M., Briscoe D.A. Genetic structure of populations of beta-haemolytic Lancefield group C streptococci from horses and their association with disease. Res Vet Sci, 1994, vol. 57, pp. 292-299.

Webb K., Jolley K.A., Mitchell Z., Robinson C., Newton J.R. Development of an unambiguous and discriminatory multilocus sequence typing scheme for the Streptococcus zooepidemicus group. Microbiology, 2008, vol. 154, pp. 3016-3024.

Chalker V.J., Waller A., Webb K. Genetic diversity of Streptococcus equi subsp. zooepidemicus and doxycycline resistance in kennelled dogs. J Clin Microbio, 2012, vol. 50, pp. 2134-2136.

Downar J., Willey B.M., Sutherland J.W. Streptococcal meningitis resulting from contact with an infected horse. J Clin Microbiol, 2001, vol. 39, pp. 2358-2359.

Waller A.S.New perspectives for the diagnosis, control, treatment, and prevention of strangles in horses. Vet Clin North Am Equine Pract, 2014, vol. 30, no. 3, pp. 591-607.

Bannister M.F., Benson C.E., Sweeney C.R. Rapid species identification of group C streptococci isolated from horses. J Clin Microbiol, 1985, vol. 21, pp. 524-526

Lindahl S., Baverud V., Egenvall A. Comparison of sampling sites and laboratory diagnostic tests for S. equisubsp.equi in horses from confirmed strangles outbreaks. J. Vet. Intern. Med, 2013, vol. 27, pp. 542-547.

Newton J.R, Verheyen K., Talbot N.C. Control of strangles outbreaks by isolation of guttural pouch carriers identified using PCR and culture of Streptococcus equi. Equine Vet J, 2000, vol. 32, pp. 515-526.

Alber J., El-Sayed A., LämmlerC., Hassan A.A., Weiss R., Zschöck, M. Multiplex polymerase chain reaction for identification and differentiation of Streptococcus equi subsp. zooepidemicus and Streptococcus equi subsp. equi. J. Vet. Med. B Infect. Dis. Vet. Public Health, 2004, vol. 51, pp. 455-458.

Sansyzbeaev A.R. Myt loshadei v Kazakhstane (rasprostranenie, svoistva vozbuditelya, razrabotka sredstv specificheskoi profilactiki i lecheniya). Dokt, Diss. Moscow, 1993. 40 р.

Mir I.A., Kumar B., Taku A., Faridi F., Bhat M.A., Baba N. Maqbool T. Bacteriological and Molecular Detection of Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus in Equines of Northern India. J Equine Sci, 2013, vol. 24, pp. 53-55.

Verheyen K., Newton J.R., Talbot N.C., Brauwere M.N. Chanter N. Elimination of guttural pouch infection and inflammation in asymptomatic carriers of Streptococcus equi. Equine Vet. J, 2000, vol. 32, pp. 527-532.

Wood J.L., Dunn K., Chanter N. Brauwere N. Persistent infection with Streptococcus equi and the epidemiology of strangles. Vet. Rec, 1993, vol. 133, pp. 375.

Gronbaek L.M., Angen O., Vigre H. Olsen S.N. Evaluation of a nested PCR test and bacterial culture of swabs from the nasal passages and from abscesses in relation to diagnosis of Streptococcus equi infection (strangles). Equine Vet. J, 2006, vol. 38, pp. 59-63.

Timoney J.F. Artiushin S.C. Detection of Streptococcus equi in equine nasal swabs and washes by DNA amplification. Vet. Rec, 1997, vol. 141, pp. 446-447.

Farrar J.S., Wittwer C.T. Extreme PCR efficient and specific DNA amplification in 15-60 seconds. Clin Chem, 2015, vol. 61, no. 1, pp. 53. Crossref.

Khoo L.L., Maswati M.A., Roseliza R., Rosnah Y., Saifu N.R., Ramlan M. Isolation of Streptococcus equi during strangles surveillance in peninsular Malaysia. Malaysian Journal of Veterinary Research, 2011, vol. 2, no. 2, pp. 27-32.

Calculator for determining the number of copies of a template. Available at: URL

Alber J., El-Sayed A., Estoepangestie S., Lämmler C., Zschöck M.Dissemination of the superantigen encoding genes seeL, seeM, szeL and szeM in Streptococcus equi subsp.equi and Streptococcus equi subsp. zooepidemicus. Vet. Microbiol, 2005, vol. 109, pp. 135-141.

Holden M.T., Heather Z., Paillot R.et al. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoSPathog, 2009. Crossref.

Myrick J.T., Pryor R.J., Palais R.A., Ison S.J., Sanford L., Dwight Z.L., Huuskonen J.J., Sundberg S.O., Wittwer C.T. Integrated extreme real-time PCR and High-Speed Melting Analysis in 52 to 87 Seconds. Clin Chem, 2019, vol. 65, no. 2, pp. 263-271. Crossref.

Al-Waily J.A., Abbas K. H., Ghazi A. M. Direct detection of Streptococcus zooepidemicus from aborted uterus of mares by using PCR technique, J.Vet.Res. 2016, vol. 15, pp. 92-99.

Guss B., Flock M., Frykberg L., Waller A.S., Robinson C., Smith K.C., Flock J.I. Getting to grips with strangles: an effective multi-component recombinant vaccine for the protection of horses from Streptococcus equi infection. PLoS Pathog, 2009, vol. 5, no. 9. Crossref.