VENEZUELAN EQUINE ENCEPHALITIS VIRUS CAPABLE OF NON-CYTOPATHIC REPLICATION: VIRUS PRODUCTION AND GROWTH IN CELLS WITH VARYING DEGREES OF RESISTANCE TO INFECTION
Main Article Content
Authors
V.V. Keyer
National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan
A.Zh. Baltabekova
National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan
A.S. Mahatova
National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan
A.V. Shustov
National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan
Abstract
The model alphavirus Venezuelan equine encephalitis virus (VEE) exhibits non-cytopathic replication in cell cultures. In this study, the ability of VEE to infect cells of different types was investigated. Non-cytopathic VEE was capable of a persistent infection in cultures of BHK-21 fibroblasts, HEK293T epithelial cells, and X63-Ag8.653 plasma cells, which all show varying abilities to suppress viral replication through an interferon (IFN)-dependent mechanism. The ability of VEE to infect a broad range of cell types and replicate without inducing cell death makes this virus an attractive vector for eukaryotic expression. In particular, persistent VEE infection was demonstrated in the myeloid cell line X63, which is capable of an IFN-induced antiviral state. This observation underscores the potential application of VEE-based vectors to drive recombinant protein expression in highly productive plasmacytoma cells.
Keywords
alphavirus, Venezuelan equine encephalitis virus, RNA-containing virus, non-cytopathic replication, growth curve
Article Details
References
De Jesus M., Wurm F.M. Manufacturing recombinant proteins in kg-ton quantities using animal cells in bioreactors. Eur. J. Pharm. Biopharm, 2011, no. 78, pp. 184-188.
Baldi L., Hacker D.L., Adam M., Wurm F.M. Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol. Lett., 2007, no. 29, pp. 677-684.
Luo J., Deng Z.L., Luo X., Tang N., et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc., 2007, no. 2, pp. 1236-1247.
Schott J.W., Hoffmann D., Schambach A. Retrovirus-based vectors for transient and permanent cell modification. Curr. Opin. Pharmacol, 2015, no. 24, pp. 135-146.
Farazmandfar T., Khanahmad Shahreza H., Haghshenas M.R., Janbabai G., Azadeh H., Mansour Samaei N. Use of integrase-minus lentiviral vector for transient expression. Cell J., 2012, no. 14, pp. 76-81.
Kremer M., Volz A., Kreijtz J.H., Fux R., Lehmann M.H., Sutter G. MVA Methods. Methods of working with recombinant vaccinia virus. Biol., 2012, no. 890, pp. 59-92.
Lackner A., Kreidl E., Peter-Vorosmarty B., Spiegl-Kreinecker S., Berger W., Grusch M. Stable protein expression in mammalian cells using baculoviruses. Methods Mol. Biol., 2012, no. 801, pp. 75-92.
Aranda A., Ruiz-Guillen M., Quetglas J.I., Bezunartea J., Casales E., Smerdou C. Recent patents on alphavirus protein expression and vector production. Recent Pat. Biotechnol., 2011, no. 5, pp. 212-226.
Casales E., Aranda A., Quetglas J.I., et al. A novel system for the production of high levels of the functional proteins in a stable cell with a Semliki Forest virus noncytopathic vector. N. Biotechnol., 2010, no. 27, pp. 138-148.
Lundstrom K. Expression of the mammalian membrane in mammalian cells using Semliki Forest virus vectors. Methods Mol. Biol., 2010, no. 601, pp. 149-163.
Nivitchanyong T., Tsai Y.C., Betenbaugh M.J., Oyler G.A. An improved in vitro and in vivo Sindbis virus expression system through host and virus engineering. Virus Res., 2009, no. 141, pp. 1-12.
Gehrke R., Heinz F.X., Davis N.L., Mandl C.W. Heterologous gene expression by infectious and replicon derived from tick-borne encephalitis virus and direct comparison of this flavivirus system with an alphavirus replicon. J. Gen. Virol., 2005, no. 86, pp. 1045-1053.
Yoshioka N., Gros E., Li H,R., et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell., 2013, no. 13, pp. 246-254.
Lundstrom K. Semliki Forest virus vectors for rapid and high-level expression of integral membrane proteins. Biochim. Biophys. Acta, 2003, no. 1610, pp. 90-96.
Kim Y.G., Baltabekova A.Z., Zhiyenbay E.E., et al. Recombinant Vaccinia virus-coded interferon inhibitor B18R: Expression, refolding and a use in a mammalian expression system with a RNA-vector. PLoS One, 2017, no. 12.
Ramakrishnan M.A. Determination of 50% endpoint titer using a simple formula. World J. Virol., 2016, no. 5, pp. 85-86.
Petrakova O., Volkova E., Gorchakov R., Paessler S., Kinney R.M., Frolov I. Noncytopathic replication of Venezuelan equine encephalitis virus and eastern equine encephalitis virus replicons in Mammalian cells. J. Virol., 2005, no. 79, pp. 7697-7608.
Atasheva S., Kim D.Y., Frolova E.I., Frolov I. Venezuelan equine encephalitis, virus variants, lacking transcription inhibitory functions, highly attenuated phenotype. J Virol., 2015, no. 89, pp. 71-82.
Garmashova N., Atasheva S., Kang W., Weaver S.C., Frolova E., Frolov I. Analysis of Venezuelan equine encephalitis. J Virol., 2007, no. 81, pp. 13552-13565.
Atasheva S., Fish A., Fornerod M., Frolova E.I. Venezuelan equine Encephalitis virus capsid protein forms a tetrameric complex with CRM1 and importin alpha / beta that obstructs the nuclear pore complex function. J. Virol., 2010, no. 84, pp. 4158-4171.
Barnes L.M., Bentley C.M., Dickson A.J. Characterization of the stability of recombinant protein production in the GS-NS0 expression system. Biotechnol. Bioeng., 2001, no. 73, pp. 261-270.
Bebbington C.R., Renner G., Thomson S., King D., Abrams D., Yarranton G.T. High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (NY), 1992, no. 10, pp. 169-175.
Baldi L., Muller N., Picasso S., et al. Transient gene expression in suspension HEK-293 cells: application to large-scale protein production. Biotechnol Prog., 2005, no. 21, pp. 148-153.
Wurm F.M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol., 2004, no. 22, pp. 1393-1398.
Kawaguchi S., Ishiguro Y., Imaizumi T., et al. Retinoic acid-inducible gene-I is constitutively expressed and involved in IFN-gamma-stimulated CXCL9-11 production in the intestinal epithelial cells. Immunol. Lett., 2009, no. 123, pp. 9-13.
Randall R.E., Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J. Gen. Virol., 2008, no. 89, pp. 1-47.
Zhang Y., Burke C.W., Ryman K.D., Klimstra W.B. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J. Virol., 2007, no. 81, pp. 11246-11255.
Karki S., Li M.M., Schoggins J.W., Tian S., Rice C.M., MacDonald M.R. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PLoS One, 2012, no. 7.
Hyde J.L., Gardner C.L., Kimura T., et al. A viral RNA structural element alters host recognition of nonself RNA. Science, 2014, no. 343, pp. 783-787.
Poddar S., Hyde J.L., Gorman M.J., Farzan M., Diamond M.S. The Interferon-Stimulated Gene IFITM3 Restricts Infection and Pathogenesis of Arthritogenic and Encephalitic Alphaviruses. J. Virol., 2016, no. 90, pp. 8780-8794.
Spotts D.R., Reich R.M., Kalkhan M.A., Kinney R.M., Roehrig J.T. Resistance to alpha / beta interferons correlates with the epizootic and virulence potential of Venezuelan equine encephalitis viruses and is determined by the 5 'noncoding region and glycoproteins. J. Virol., 1998, no. 72, pp. 10286-10291.
Reynolds A., Anderson E.M., Vermeulen A., et al. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA, 2006, no. 12, pp. 988-993.
McNab F., Mayer-Barber K., Sher A., Wack A., O'Garra A. Type I interferons in infectious disease. Nat. Rev. Immunol., 2015, no. 15, pp. 87-103.
Ryman K.D., Klimstra W.B. Host responses to alphavirus infection. Immunol. Rev., 2008, no. 225, pp. 27-45.
Alsharifi M., Lobigs M., Regner M., Lee E., Koskinen A., Mullbacher A. Type I interferons trigger systemic, partial lymphocyte activation in response to viral infection. J. Immunol., 2005, no. 175, pp. 4635-4640.