GPR161 RECEPTOR AS A NOVEL TARGET FOR ANTIBODY-BASED IMMUNOTHERAPY OF TRIPLE-NEGATIVE BREAST CANCER

Main Article Content

Authors

K.K. Mukanov

National Center for Biotechnology, 13/5, Kurgalzhyn road, Astana, 010000, Kazakhstan

K.N. Mukantayev

National Center for Biotechnology, 13/5, Kurgalzhyn road, Astana, 010000, Kazakhstan

P. Tarlykov

National Center for Biotechnology, 13/5, Kurgalzhyn road, Astana, 010000, Kazakhstan

Abstract

Triple-negative breast cancer is a rare type of breast cancer, accounting for 20% of all women diagnosed with the adenocarcinoma. Triple-negative breast cancer cells are mainly characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptors. Moreover, these cells do not respond to hormonal and targeted treatment with monoclonal antibodies. A literature review revealed several receptors in the oncogenic cells of this phenotype with potential to serve as a novel target for therapy. In particular, the G-protein coupled receptor (GPR) 161 was found to be overexpressed in triple-negative breast cancer cells, and correlated with a poor prognosis of the disease. In addition, overexpression of GPR161 in human mammary epithelial cells resulted in increased cell proliferation, migration, intracellular accumulation of E-cadherin, and the formation of multiple structures in a three-dimensional cell culture. Activation of the receptor reduces the phosphorylation of GTPase-activating protein 1 proteins, thereby enhancing mammalian target of rapamycin signaling pathways.

GPCRs belong to a family of cell membrane proteins that transform extracellular signals into intracellular signaling pathways. These receptors play a key role in many important physiological processes whose malfunction may lead to various diseases, including cancer. Several currently produced drugs target different members of the GPCR family and have shown excellent therapeutic advantages.

Therefore, huge efforts are focused on developing new drugs based on GPCRs, particularly for the treatment of cancer. This article provides an overview of data that show great promise in new opportunities for the treatment of triple-negative breast cancer. In particular, research on GPCRs is highlighted as promising targets for monoclonal antibodies and, after humanization, as therapeutic drugs

 

Keywords

cell receptor, membrane proteins, G-protein–coupled receptor, breast cancer, monoclonal antibodies

Article Details

References

J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, F. Bray. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 2014. doi: 10.1002/ijc.29210. PMID: 25220842. Published online 9 October 2014.

Subramanian S., Hodova K.A., Selchuk V. Yu. Vizovi v protivirakovoy borbe/ Challenges in cancer control. Almanah. Innovacii v onkologii / Almanac. Innovations in oncology, 2015, pp. 4-7. www.eafo.info | www.sk.ru.

Baibikova Yu.A. Innovatsii v razrabotke novykh lekarstvennykh preparatov v oblasti onkologii /Innovations in the development of new drugs in the field of oncology. Almanah. Innovacii v onkologii / Almanac. Innovations in oncology, 2015, pp. 66. www.eafo.info | www.sk.ru.

URL.

Artamonova E.V. Palbociclib in combination with hormone therapy for luminal HER2-negative metastatic breast cancer: the new highly effective strategy of drug treatment. Tumors of the female reproductive system, 2017, vol. 13, pp. 28-40. doi: 10.17650/1994-4098-2017-13-3-28-41.

Lachapelle J., Foulkes W.D. Triple-negative and basal-like breast cancer: implications for oncologists. Current Oncology, 2011, vol. 18, no. 4, pp. 161-164. PMID: 21874112.

Foulkes W.D., Smith I.E., Reis–Filho J.S. Triple-negative breast cancer. The New England Journal of Medicine, 2010, vol. 363, pp. 1938-1948. doi: 10.1056/NEJMra1001389.

Rakha E., Reis–Filho J.S. Basal-like breast carcinoma: from expression profiling to routine practice. Archives of Pathology & Laboratory Medicine, 2009, vol. 133, pp. 860-868. doi: 10.1043/1543-2165-133.6.860.

Sabatier R., Finetti P., Guille A., Adelaide J., Chaffanet M., Viens P., Birnbaum D., Bertucci F. Claudin-low breast cancers: clinical, pathological, molecular and prognostic characterization. Molecular Cancer, 2014, vol. 13, no. 228, pp. 1-14. doi: 10.1186/1476-4598-13-228.

Weigelt B., Baehner F.L., Reis-Filho J.S. The contribution of gene expression profiling to breast cancer classification, prognostication, and prediction: a retrospective of the last decade. The Journal of Pathology, 2010, vol. 220, pp. 263-280. doi: 10.1002/path.2648.

Sotiriou C., Pusztai L. Gene-expression signatures in breast cancer. The New England Journal of Medicine, 2009, vol. 360, pp. 790-800. doi: 10.1056/NEJMra0801289.

Kreike B., van Kouwenhove M., Horlings H., Weigelt B., Peterse H., Bartelink H., van de Vijver M.J. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Research, 2007, vol. 9, pp. 1-14. doi: 10.1186/bcr1771.

Wicha M.S., Liu S., Dontu G. Cancer stem cells: an old idea — a paradigm shift. Cancer Research, 2006, vol. 66, pp. 1883-1890. doi: 10.1158/0008-5472.CAN-05-3153.

Morrison B.J., Schmidt C.W., Lakhani S.R., Reynolds B.A., Lopez J.A. Breast cancer stem cells: implications for therapy of breast cancer. Breast Cancer Research, 2008, vol. 10, pp. 210. doi: 10.1186/bcr2111.

Sarrió D., Rodriguez-Pinilla S.M., Hardisson D., Cano A., Moreno-Bueno G., Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Research, 2008, vol. 68, pp. 989-997. doi: 10.1158/0008-5472.CAN-07-2017.

Stevens K.N., Vachon C.M., Couch F.J. Genetic Susceptibility to Triple-Negative Breast Cancer. Cancer Research, 2013, vol. 73, pp. 2025-2030. doi: 10.1158/0008-5472.CAN-12-1699.

Feigin M.E., Bin Xue, Hammell M.C., Muthusamy S.K. G-protein–coupled receptor GPR161 is overexpressed in breast cancer and is a promoter of cell proliferation and invasion. Proceedings of the National Academy of Sciences, 2014, vol. 111, no. 11, pp. 4191-4196. doi: 10.1073/pnas.1320239111.

Skovorodnikova P.A., Chesnokov M.S., Budko A.A., Kustova I.F., Lazarevich N.L. IQGAP scaffold proteins are the multifunctional regulators of cellular signaling and malignant transformation. Advances in molecular oncology, 2017, vol. 4, pp. 36-45. doi: 10.17650/2313-805X-2017‑4‑2‑36-45.

Feigin M.E. Harnessing the genome for characterization of G-protein coupled receptors in cancer pathogenesis. FEBS Journal, 2013, vol. 280, pp. 4729-4738. doi: 10.1111/febs.12473.

O’Hayre M., Vázquez-Prado J., Kufareva I., Stawiski E.W., Handel T.M., Seshagiri S., Gutkind J.S. The emerging mutational landscape of G proteins and G protein-coupled receptors in cancer. Nature Reviews Cancer, 2013. AOP, published online. doi: 10.1038/nrc3521.

Luttrell L.M. Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors. Molecular Biotechnology, 2008, vol. 39, pp. 239-264. doi: 10.1007/s12033-008-9031-1.

Harmar A.J. Family-B G-protein-coupled receptors. Genome Biology, 2001, vol. 2, pp. 3013. PMID: 11790261.

Stacey M., Lin H.H., Gordon S., McKnight A.J. LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends in Biochemical Sciences, 2000, vol. 25, pp. 284-289. PMID: 10838568.

Hoon M.A., Adler E., Lindemeier J., Battey J.F., Ryba N.J., Zuker C.S. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct O3–topographic selectivity. Cell., 1999, vol. 96, pp. 541-551. PMID: 10052456.

Avdonin P.V., Kozhevnikova L.M. Regulation of Expression and Functional Activity of G-Protein-Coupled Receptors. Alterations of These Processes in Diseases. Membrane and Cell Biology, 2007, vol. 1, no., pp. 2-27.

Malbon C.C. Frizzleds: new members of the superfamily of G-protein-coupled receptors. Frontiers in Bioscience, 2004, vol. 9, pp. 1048-1058. PMID: 14977528.

Bjarnadottir T.K., Fredriksson R., Hoglund P.J., Gloriam D.E., Lagerstrom M.C., Schioth H.B. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics, 2004, vol. 84, pp. 23-33. doi: 10.1016/j.ygeno.2003.12.004.

Perez D.M. The evolutionarily triumphant G protein-coupled receptor. Molecular Pharmacology, 2003, vol. 63, pp. 1202-1205. doi: 10.1124/mol.63.6.1202.

Fredriksson R., Lagerstrom M.C., Lundin L.G., Schioth H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 2003, vol. 63, pp. 1256-1272. doi: 10.1124/mol.63.6.1256.

Ridge K.D., Abdulaev N.G., Sousa M., Palczewski K. Phototransduction: Crystal clear. Trends in Biochemical Sciences, 2003, vol. 28, pp. 479-487. doi: 10.1016/S0968-0004(03)00172-5.

Gether U., Kobilka B.K. G protein-coupled receptors. II. Mechanism of agonist activation. Journal of Biological Chemistry, 1998, vol. 273, pp. 17979-17982. PMID: 9660746.

De Lean A., Stadel J.M., Lefkowitz R.J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. Journal of Biological Chemistry, 1980, vol. 255, pp. 7108-7117. PMID: 6248546.

Samama P., Cotecchia S., Costa T., Lefkowitz R.J. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. Journal of Biological Chemistry, 1993, vol. 268, pp. 4625-4536. PMID: 8095262.

Lefkowitz R.J., Cotecchia S., Samama P., Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends in Pharmacological Sciences, 1993, vol. 14, pp. 303-307. doi: 10.1016/0165-6147(93)90048-O.

Kan Z., Jaiswal B.S., Stinson J., Janakiraman V., Bhatt D., Stern H.M., Yue P., Haverty P.M., Bourgon R., Zheng J. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 2010, vol. 466, pp. 869-873. doi: 10.1038/nature09208.

Johannessen C.M. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature, 2013, vol. 504, pp. 138-142. doi: 10.1038/nature12688.

Schuijers J., Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R spondins. EMBO Journal, 2012, vol. 31, pp. 2685-2696. doi: 10.1038/emboj.2012.149.

Epstein E.H. Basal cell carcinomas: attack of the hedgehog. Nature Reviews Cancer, 2008, vol. 8, pp. 743-754. doi: 10.1038/nrc2503.

Rubin L.L., de Sauvage F.J. Targeting the Hedgehog pathway in cancer. Nature Reviews Drug Discovery, 2006, vol. 5, pp. 1026-1033. doi: 10.1038/nrd2086.

Lum L., Beachy P.A. The Hedgehog response network: sensors, switches, and routers. Science, 2004, vol. 304, pp. 1755-1759. doi: 10.1126/science.1098020.

Xie J., Murone M., Luoh S.M., Ryan A., Gu Q., Zhang C., Bonifas J.M., Lam C.W., Hynes M., Goddard A., Rosenthal A., Epstein E.H. Jr, de Sauvage F.J. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 1998, vol. 391, pp. 90-92. doi: 10.1038/34201.

Lappano R., Maggiolini M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nature Reviews Drug Discovery, 2011, vol. 10, pp. 47-61. doi: 10.1038/nrd3320.

Hurst J.H., Mendpara N., Hooks S.B. Regulator of G-protein signaling expression and function in ovarian cancer cell lines. Cellular & Molecular Biology Letters, 2009, vol. 14, pp. 153-174. doi: 10.2478/s11658-008-0040-7.

Wieduwilt M.J., Moasser M.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics. Cellular and Molecular Life Sciences, 2008, vol. 65, pp. 1566-1584. doi: 10.1007/s00018-008-7440-8.

Vivacqua A., Lappano R., De Marco P., Sisci D., Aquila S., De Amicis F., Fuqua S.A., Andò S., Maggiolini M. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF a in estrogen receptor a-positive cancer cells. Molecular Endocrinology, 2009, vol. 23, pp. 1815-1826. doi: 10.1210/me.2009-0120.

Finak G., Bertos N., Pepin F., Sadekova S., Souleimanova M., Zhao H., Chen H., Omeroglu G., Meterissian S., Omeroglu A., Hallett M., Park M. Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 2008, vol. 14, pp. 518-527. doi: 10.1038/nm1764.

Madeo A., Maggiolini M. Nuclear alternate estrogen receptor GPR30 mediates 17b-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Research, 2010, vol. 70, pp. 6036-6046. doi: 10.1158/0008-5472.CAN-10-0408.