POTENTIAL FOR ACCELERATED REPLICATION OF FRAXINUS SOGDIANA USING IN VITRO CULTURE AND IDENTIFICATION OF A RELIC TREE USING DNA-BARCODING

Main Article Content

Authors

M.K. Amangeldinova

Kazakh Agrotechnical Research University named after S. Seifullin, 010011, Kazakhstan, Astana, Zhenis Ave., 62

S.S. Bekkuzhina

Kazakh Agrotechnical Research University named after S. Seifullin, 010011, Kazakhstan, Astana, Zhenis Ave., 62
National Center of Biotechnology 010000, Kazakhstan, Astana, Kurgaldzhin highway, 13/5

N.B. Zhumabay

National Center of Biotechnology 010000, Kazakhstan, Astana, Kurgaldzhin highway, 13/5

D. Tussipkan

National Center of Biotechnology 010000, Kazakhstan, Astana, Kurgaldzhin highway, 13/5

S.A. Manabayeva

National Center of Biotechnology 010000, Kazakhstan, Astana, Kurgaldzhin highway, 13/5

Abstract

Four species of Fraxinus including F. angustifolia subsp. syriaca (Boiss.) Yalt., F. sogdiana Bunge, F. pennsylvanica Marshall and F. americana L. grow in Kazakhstan. The study aimed to determine the conditions for awakening endogenous dormancy in vitro of F. sogdiana. In the control group without vernalization, the sterile culture yield at room temperature was 30%. However, with cold treatment, this yield increased to 60%, which is twice as high. It was  observed that on MS medium without the addition of hormones, 22 microshoots were obtained from unwounded seeds, whereas 39 microshoots were obtained from wounded seeds during microclonal propagation.Phylogenetic relationships and species identification were analyzed using three DNA barcoding markers, comparing F. sogdiana with species from the NCBI database. rbcL and ITS markers did not show satisfactory interspecific genetic variability among F. species. Notably, matK gene sequences effectively differentiated F. sogdiana from other species. These results provide fundamental information that is valuable for future biotechnological and molecular studies.

Keywords

Fraxinus sogdiana, in vitro culture, micropropagation, DNA-barcoding, rbcL, ITS

Article Details

References

Aldibekova, A., Kurmanbayeva, M. and Aksoy, A. (2023), “Anatomical Structure and Phytochemical Composition of a Rare Species Fraxinus sogdiana Bunge (Oleaceae) Growing in Different Soils in Kazakhstan”, Diversity, Vol. 15, No. 769, PP. 1-23.

Barstow, M., Oldfield, S., Westwood, M., Jerome, D., Beech, E. and Rivers, M. (2018), “The red list of Fraxinus”, The red list of Fraxinus, PP. 1-32.

Kim, C., Kim, D.K., Sun, H. and Kim, J.H. (2022), “Phylogenetic relationship, biogeography, and conservation genetics of endangered Fraxinus chiisanensis (Oleaceae), endemic to South Korea”, Plant Divers, Vol. 44, No. 2, PP. 170–180.

Wallander, E. (2012), “Systematics and floral evolution in Fraxinus (Oleaceae)”, Belgische Dendrologie Belge, PP. 38-58.

Hinsinger, D.D., Basak, J., Gaudeul, M., Cruaud, C. and Bousquet, J. (2013), “The Phylogeny and Biogeographic History of Ashes (Fraxinus, Oleaceae) Highlight the Roles of Migration and Vicariance in the Diversification of Temperate Trees”, PLoS One, Vol. 8, No. 11.

“Красная книга Казахстана” (2014), Apt Print XXI, Vol. 2, PP. 452.

Jallali, I., Hédi, A., Nouir, R., Hannachi, H. and Essghaier, B. (2024), “Green synthesis of silver nanoparticles from Fraxinus angustifolia Vahl. Extract: Characterization and assessment of their biological activities”, Biocatalysis and Agricultural Biotechnology, Vol. 57.

Bouguellid, G., Russo, C., Lavorgna, M., Piscitelli, C., Ayouni, K., Wilson, E. and Isidori, M. (2020), “Antimutagenic, antigenotoxic and antiproliferative activities of Fraxinus angustifolia Vahl. leaves and stem bark extracts and their phytochemical composition”, PLOS ONE, Vol. 15, No. 4, PP. 1-21.

Fenning, T.M., O’Donnell, M., Preedy, K., Bézanger, A., Kenyon, D. and Lopez, G. (2022), “The rooting ability of in vitro shoot cultures established from a UK collection of the common ash (Fraxinus excelsior L.) and their ex vitro survival”, Annals of forest science, Vol. 79, PP. 1-16.

Hebda, A., Liszka, A., Zgłobicki, P. and Nawrot-Chorabik K. (2020), “Transformation of European Ash (Fraxinus excelsior L.) Callus as a Starting Point for Understanding the Molecular Basis of Ash Dieback”, Cold Spring Harbor Laboratory, Vol. 1, PP. 1-10.

Kostova, I. and Iossifova, T. (2007), “Chemical components of Fraxinus species”, Fitoterapia, Vol. 78, No. 2, PP. 85-106.

He, L., Xu, Y., Zeng, F., Tian, H., Xiao, Y., Liu, H. and Zhan, Y. (2021), “Establishment of a micropropagation supporting technology for the Fraxinus mandshurica × Fraxinus Sogdiana”, In Vitro Cellular & Developmental Biology - Plant, Vol. 57, No. 2, PP. 307-318.

Rostami, H.R., Nasr, S.M., Kazemitabar, S.K. and Zafarian, F. (2019), “Effect of provenances and culture media on seed germination of ash (Fraxinus excelsior L.) in embryo in vitro culture”, Iranian Journal of Forest and Poplar Research, Vol. 27, PP. 159-168.

Shukla, S. and Shukla, S.K. (2024), “Chapter 12 - Micropropagation for crop improvement and it's commercialization potential”, Academic Press, PP. 271-287.

Van Sambeek, J.W. and Preece, J.E. (2007), “In vitro Propagation of Fraxinus Species”, Protocols for Micropropagation of Woody Trees and Fruits, PP. 179-192.

Dancheva, D. and Iliev, I. (2015), “Factors affecting adventitious shoot formation in Fraxinus excelsior L.”, Propagation of Ornamental Plants, Vol. 15, No. 1, PP. 10-20.

Kress, W. J. & Erickson, D. L. (2008). DNA barcodes: genes, genomics, and bioinformatics. Proceedings of the National Academy of Sciences of the United States of America 105(8): 2761-2762.

Gill, B. A., Musili, P. M., Kurukura, S., Hassan, A. A., Goheen, J. R., Kress, W. J., Kuzmina, M., Pringle, R. M. & Kartzinel, T. R. (2019). Plant DNA-barcode library and community phylogeny for a semi-arid East African savanna. Mol Ecol Resour 19(4): 838-846.

Li Huili, Wenjun, X., Tong, T., Li, Y., Zhang, M., Lin, X., Zou, X., Wu, Q. & Guo, X. (2021). The specific DNA barcodes based on chloroplast genes for species identification of Orchidaceae plants. Scientific Reports 11(1): 1424.

Xu, S. Z., Li, Z. Y. & Jin, X. H. (2018). DNA barcoding of invasive plants in China: A resource for identifying invasive plants. Mol Ecol Resour 18(1): 128-136.

Vasconcelos, S., Nunes, G. L., Dias, M. C., Lorena, J., Oliveira, R. R. M., Lima, T. G. L., Pires, E. S., Valadares, R. B. S., Alves, R., Watanabe, M. T. C., Zappi, D. C., Hiura, A. L., Pastore, M., Vasconcelos, L. V., Mota, N. F. O., Viana, P. L., Gil, A. S. B., Simões, A. O., Imperatriz-Fonseca, V. L., Harley, R. M., Giulietti, A. M. & Oliveira, G. (2021). Unraveling the plant diversity of the Amazonian canga through DNA barcoding. Ecol Evol 11(19): 13348-13362.

Jones, L., Twyford, A. D., Ford, C. R., Rich, T. C. G., Davies, H., Forrest, L. L., Hart, M. L., McHaffie, H., Brown, M. R., Hollingsworth, P. M. & de Vere, N. (2021). Barcode UK: A complete DNA barcoding resource for the flowering plants and conifers of the United Kingdom. Mol Ecol Resour 21(6): 2050-2062.

Wallander E (2008) Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Systematics and Evolution 273: 25–49.

Jeandroz S, Roy A, Bousquet J (1997) Phylogeny and phylogeography of the circumpolar genus Fraxinus (Oleaceae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Molecular Phylogenetics and Evolution 7: 241–251.

Hinsinger, D. D., et al. (2013). "The Phylogeny and Biogeographic History of Ashes (Fraxinus, Oleaceae) Highlight the Roles of Migration and Vicariance in the Diversification of Temperate Trees." PLoS One 8(11): e80431.

Yi, X., Li, M., Chen, L., & Wang, X. (2019). The complete chloroplast genome of Fraxinus pennsylvanica (Oleaceae). Mitochondrial DNA Part B, 4(1), 1932–1933. Crossref

Kim, C., Kim, HJ., Do, H.D.K. et al. Characterization of the complete chloroplast genome of Fraxinus chiisanensis (Oleaceae), an endemic to Korea. Conservation Genet Resour 11, 63–66 (2019). Crossref

Duan, H. C., Zheng, X. H., Li, Y. Y., Li, S. M., Ye, L., Jing, H. Z., & Dong, Q. (2020). The complete chloroplast genome of Fraxinus malacophylla (Oleaceae, Oleoideae). Mitochondrial DNA Part B, 5(3), 3570–3571.

Olofsson JK, Cantera I, Van de Paer C, et al. Phylogenomics using low-depth whole genome sequencing: A case study with the olive tribe. Mol Ecol Resour. 2019; 19: 877–892. Crossref

Bagramova A.N., Rakhimzhanova A.O. and Manabayeva S.A. (2023). Features of microclonal propagation and organogenesis of Sogdian Ash in vitro culture. Prospects and key tendencies of science in contemporary world, PP. 7-16.

In vitro culture from internodes of Melastoma malabathricum L. on Murashige and Skoog (1962) modified medium with thidiazuron and 1-naphthaleneacetic acid. To cite this article: K Karimah et al 2020 IOP Conf. Ser.: Earth Environ. Sci. 481 01200

In Vitro Propagation of Paradox Walnut Rootstock. Authors: John A. Driver and Andrew H. Kuniyuki

Doyle, J. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19.

Sutula, M., Kakanay, A., Tussipkan, D., Dzhumanov, S. & Manabayeva, S. (2024). Phylogenetic Analysis of Rare and Endangered Tulipa Species (Liliaceae) of Kazakhstan Based on Universal Barcoding Markers. Biology 13(6): 365.

ZHANG, C.-Y., WANG, F.-Y., YAN, H.-F., HAO, G., HU, C.-M. and GE, X.-J. (2012), Testing DNA barcoding in closely related groups of Lysimachia L. (Myrsinaceae). Molecular Ecology Resources, 12: 98-108. Crossref

Kuzmina, M.L., Johnson, K.L., Barron, H.R. et al. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library. BMC Ecol 12, 25 (2012). Crossref

Khan, B., Ahmad, H., Alam, J. et al. DNA barcoding of Haplophyllum gilesii (Hemsel.) C. C. Townsend from the Gilgit-Baltistan Province of Pakistan. Braz. J. Bot 42, 651–659 (2019). Crossref

URL

Du, N. and Pijut, P.M. (2008), “Regeneration of plants from Fraxinus pennsylvanica hypocotyls and cotyledons”, Scientia Horticulturae, Vol. 118, PP. 74-79.

Arca, M., Hinsinger, D. D., Cruaud, C., Tillier, A., Bousquet, J. & Frascaria-Lacoste, N. (2012). Deciduous trees and the application of universal DNA barcodes: a case study on the circumpolar Fraxinus. PLoS ONE 7(3): e34089.