SSR-BASED ASSESSMENT OF GENETIC DIVERSITY IN BARLEY COLLECTION FROM THE STATE COMMISSION FOR VARIETY TESTING OF AGRICULTURAL CROPS OF KAZAKHSTAN

Main Article Content

Authors

Yu. Genievskaya

Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan

T. Azhgaliev

State Commission for Variety Testing of Agricultural Crops, Astana 020000, Kazakhstan

S. Abugalieva

Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
al-Farabi Kazakh National University, Almaty 050040, Kazakhstan

Y. Turuspekov

Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
al-Farabi Kazakh National University, Almaty 050040, Kazakhstan

Abstract

Barley (Hordeum vulgare L.) is a globally significant cereal crop with a substantial production footprint. As a versatile commodity, it serves as a primary resource for animal feed, malting, and human consumption. Genetic diversity among 49 barley accessions procured from the State Commission for Variety Testing of Agricultural Crops in Kazakhstan was assessed using a set of 21 SSR markers associated with various agronomic traits. The collection exhibited moderate genetic diversity, as indicated by a mean polymorphic information content (PIC) of 0.548 ± 0.153 and a mean Shannon's information index (I) of 0.980 ± 0.317, aligning with previously reported estimates of barley genetic variation in the World. STRUCTURE analysis identified three distinct population clusters (K = 3) using Bayesian clustering and DeltaK, which was confirmed by PCoA results. However, neighbor-joining tree analysis revealed a more detailed population structure with six distinct clusters, indicating substantial genetic diversity within the barley collection. Distinct phenotypic variations were observed among identified genetic clusters, implying a strong association between genetic diversity and agronomic traits, including plant height, kernel number per spike, and grain yield. Seven barley accessions (GSI_B_60, GSI_B_82, GSI_B_216, GSI_B_85, GSI_B_96, GSI_B_141, and GSI_B_208) forming a cluster NJ_tree_2 demonstrated the highest mean grain yield of 50.99 ± 2.95 g/ m2. This specific cluster and its constituent accessions exhibit promising potential for development into high-yielding cultivars or as a valuable source of beneficial alleles for barley breeding initiatives.

Keywords

Hordeum vulgare L.,, Microsatellites, Population structure

Article Details

References

The Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Available at: URL (Accessed 29.06.2024).

Langridge P. Economic and Academic Importance of Barley. In: Stein, N., Muehlbauer, G.J., editors. The Barley Genome. Compendium of Plant Genomes. Cham: Springer International Publishing; 2018., p. 1-10.

Verstegen H., Köneke O., Korzun V., von Broock R. The world importance of barley and challenges to further improvements. In: Kumlehn, J., Stein, N. (eds) Biotechnological Approaches to Barley Improvement. Springer, Berlin, Heidelberg; 2014. p. 3-19.

Dai F., Nevo E., Wu D., Comadran J., Zhou M., Qiu L., Zhang G. Tibet is one of the centers of domestication of cultivated barley. Proceedings of the National Academy of Sciences., 2012., Vol. 109., P. 16969-16973.

Agency for Strategic planning and reforms of the Republic of Kazakhstan Bureau of National statistics. Available at: URL (Accessed 25.06.2024).

Abramova M.V., Dubovets T.A., Krotova L.A. Testing of spring barley in the conditions of central Kazakhstan. Bulletin of AGAU., 2016., No. 1 (135).

Kebede A., Kang M. S., Bekele E. Advances in mechanisms of drought tolerance in crops, with emphasis on barley. Advances in agronomy., 2012., Vol. 156., P. 265-314.

Xu Y. P., Pan Y. D., Liu Q. D., Yao Y. H., Jia Y. C., Ren C., Zhang H. Y. Drought resistance identification and drought resistance indexes screening of barley resources at mature period. Acta Agronomica Sinica, 2020., Vol. 46., P. 448-461.

Fu Y.B. Understanding crop genetic diversity under modern plant breeding. Theoretical and Applied Genetics., 2015., Vol. 128., P. 2131-2142.

Varshney R. K., Bohra A., Roorkiwal M., Barmukh R., Cowling W. A., Chitikineni A., Siddique K. H. Fast-forward breeding for a food-secure world. Trends in Genetics., 2021., Vol. 37., P. 1124-1136.

Idrees M., Irshad M. Molecular markers in plants for analysis of genetic diversity: a review. European academic research., 2014., Vol. 2., No. 1., P. 1513-1540.

Salgotra R. K., Chauhan B. S. Genetic diversity, conservation, and utilization of plant genetic resources. Genes., 2023., Vol. 14., No. 1., P. 174.

Petersen L., Østergård H., Giese H. Genetic diversity among wild and cultivated barley as revealed by RFLP. Theoretical and Applied Genetics., 1994., Vol. 89., P. 676-681.

Casas A. M., Igartua E., Valles M. P., Molina‐Cano J. L. Genetic diversity of barley cultivars grown in Spain, estimated by RFLP, similarity and coancestry coefficients. Plant breeding., 1998., Vol. 117., No. 5., P. 429-435.

Hou Y.C., Yan Z.H., Wei Y.M., Zheng Y. L. Genetic diversity in barley from west China based on RAPD and ISSR analysis. Barley Genetics Newsletter., 2005., Vol. 35., No. 1., P. 9-22.

Qi X., Lindhout P. Development of AFLP markers in barley. Molecular and General Genetics MGG., 1997., Vol. 254., P. 330-336.

Turpeinen T., Vanhala T., Nevo E., Nissilä E. AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theoretical and Applied Genetics., 2003., Vol. 106., No. 7., P. 1333-1339.

Turuspekov Y., Nakamura K., Yoshikawa R., Tuberosa R. Genetic diversity of Japanese barley cultivars based on SSR analysis. Breeding science., 2001., Vol. 51., No. 3., P. 215-218.

Nandha P. S., Singh J. Comparative assessment of genetic diversity between wild and cultivated barley using g SSR and EST‐SSR markers. Plant breeding., 2014., Vol. 133., No. 1., P. 28-35.

Muñoz-Amatriaín M., Cuesta-Marcos A., Endelman J. B., Comadran J., Bonman J. M., Bockelman H. E., et al. The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PloS one., 2014., Vol. 9., No. 4., P. e94688.

Bengtsson T., Manninen O., Jahoor A., Orabi J. Genetic diversity, population structure and linkage disequilibrium in Nordic spring barley (Hordeum vulgare L. subsp. vulgare). Genetic Resources and Crop Evolution., 2017., Vol. 64., P. 2021-2033.

Kumar P., Gupta V. K., Misra A. K., Modi D. R., Pandey B. K. Potential of molecular markers in plant biotechnology. Plant omics., 2009., Vol. 2., No. 4., P. 141-162.

Varshney R. K., Thiel T., Sretenovic-Rajicic T., Baum M., Valkoun J., Guo P., et al. Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley. Molecular Breeding., 2008., Vol. 22., P. 1-13.

Close T. J., Bhat P. R., Lonardi S., Wu Y., Rostoks N., Ramsay L., et al. Development and implementation of high-throughput SNP genotyping in barley. BMC genomics., 2009., Vol. 10., P. 1-13.

Varshney R. K., Marcel, T. C., Ramsay, L., Russell, J., Röder, M. S., Stein, N., et al. A high-density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics., 2007., Vol. 114., P. 1091-1103.

Tyrka M., Perovic D., Wardyńska A., Ordon F. A new diagnostic SSR marker for selection of the Rym4/Rym5 locus in barley breeding. Journal of applied genetics., 2008., Vol. 49., P. 127-134.

Singh D., Dracatos P., Derevnina L., Zhou M., Park R. F. Rph23: A new designated additive adult plant resistance gene to leaf rust in barley on chromosome 7H. Plant Breeding., 2015., Vol. 134., No. 1., P. 62-69.

Lakew B., Henry R. J., Eglinton J., Baum M., Ceccarelli S., Grando S. SSR analysis of introgression of drought tolerance from the genome of Hordeum spontaneum into cultivated barley (Hordeum vulgare ssp vulgare). Euphytica., 2013., Vol. 191., P. 231-243.

Ghomi K., Rabiei B., Sabouri H., Gholamalipour Alamdari E. Association analysis, genetic diversity and population structure of barley (Hordeum vulgare L.) under heat stress conditions using SSR and ISSR markers linked to primary and secondary metabolites. Molecular Biology Reports., 2021., Vol. 48., P. 6673-6694.

Tomka M., Urminská D., Chňapek M., Gálová Z. Potential of selected SSR markers for identification of malting barley genotypes. The Journal of Microbiology, Biotechnology and Food Sciences., 2017., Vol. 6., No. 6., P. 1276.

Holton T. A., Christopher J. T., McClure L., Harker N., Henry R. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat, Molecular breeding., 2002., Vol. 9., P. 63-71.

Kılıç H., Akar T., Kendal E., Sayım I. Evaluation of grain yield and quality of barley varieties under rainfed conditions. African Journal of Biotechnology., 2010., Vol. 9., No. 46., P. 7825-7830.

Karakousis A., Barr A. R., Chalmers K. J., Ablett G. A., Holton T. A., Henry R. J., et al. Potential of SSR markers for plant breeding and variety identification in Australian barley germplasm. Australian journal of agricultural research., 2003., Vol. 54., No. 12., P. 1197-1210.

Abugalieva S., Volkova L., Yermekbaev K., Turuspekov Y. Genotyping of commercial varieties of spring bread wheat of Kazakhstan using microsatellite DNA-markers. Biotechnology. Theory and Practice., 2012., Vol. 2., P. 35-45.

Hao C., Wang L., Ge H., Dong Y., Zhang, X. Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLOS one., 2011., Vol. 6., P. e17279.

Salem K. F. M., El-Zanaty A. M., Esmail R. M. Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. World Journal of Agricultural Sciences, 2008, Vol. 4(5), P. 538-544.

Zatybekov A., Anuarbek S., Abugalieva S., Turuspekov Y. Phenotypic and genetic variability of a tetraploid wheat collection grown in Kazakhstan. Vavilov Journal of Genetics and Breeding., 2020., Vol. 24., No. 6., P. 605.

Tajibayev D., Mukin K., Babkenov A., Chudinov V., Dababat A. A., Jiyenbayeva K., et al. Exploring the agronomic performance and molecular characterization of diverse spring durum wheat germplasm in Kazakhstan. Agronomy., 2023., Vol. 13., No. 7., P. 1955.

Wang L., Guan R., Zhangxiong L., Chang R., Qiu L. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Science., 2006., Vol. 46., P. 1032-1038.

Zargar M., Dyussibayeva E., Orazov A., Zeinullina A., Zhirnova I., Yessenbekova G., Rysbekova A. Microsatellite-based genetic diversity analysis and population structure of Proso Millet (Panicum miliaceum L.) in Kazakhstan. Agronomy., 2023., Vol. 13., No. 10., P. 2514.

Hu X., Wang J., Lu P., Zhang H. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers. Journal of Genetics and Genomics, 2009., Vol. 36., P. 491-500.

Zatybekov A., Yermagambetova M., Genievskaya Y., Didorenko S., Abugalieva S. Genetic Diversity Analysis of Soybean Collection Using Simple Sequence Repeat Markers. Plants., 2023., Vol. 12., No. 19., P. 3445.

Mulato B. M., Möller M., Zucchi M. I., Quecini V., Pinheiro J. B. Genetic diversity in soybean germplasm identified by SSR and EST-SSR markers. Pesquisa Agropecuária Brasileira., 2010., Vol. 45., P. 276-283.

Mazkirat S., Baitarakova K., Kudaybergenov M., Babissekova D., Bastaubayeva S., Bulatova K., Shavrukov, Y. SSR Genotyping and Marker–Trait Association with Yield Components in a Kazakh Germplasm Collection of Chickpea (Cicer arietinum L.). Biomolecules., 2023., Vol. 13., No. 12., P. 1722.

Hajibarat Z., Saidi A., Hajibarat Z., Talebi R. Characterization of genetic diversity in chickpea using SSR markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiology and molecular biology of plants., 2015., Vol. 21., P. 365-373.

Genievskaya Y., Jantasov S., Nurbayeva E., Turuspekov Y. SSR-based assessment of genetic diversity in tomato cultivars and lines grown in Kazakhstan. Eurasian Journal of Applied Biotechnology., 2024., No. 2., P. 3-15.

Ledovskoy Y., Abugalieva S., Turuspekov Y. Comparative assessment of the genetic variation in wild and cultivated barley based on SSR markers. Asian Australas J Plant Sci Biotechnol., 2010., Vol. 4., P. 21-26.

Mariey S. A., Mohamed M. N., Khatab I. A., El-Banna A. N., Khalek A. F. A., Al-Dinary M. E. Genetic diversity analysis of some barley genotypes for salt tolerance using SSR markers. Journal of Agricultural Science., 2013., Vol. 5., P. 12.

Dospekhov B.A. Methodology of field experiment. Moscow, 1986, 351 p.

Aboul-Maaty N.A.F., Oraby H.A.S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre., 2019., Vol. 43., No. 1., P. 1-10.

Abou-Elwafa S. F. Association mapping for drought tolerance in barley at the reproductive stage. Comptes rendus biologies., 2016., Vol. 339., No. 2., P. 51-59.

Mesfin A., Smith K. P., Dill‐Macky R., Evans C. K., Waugh R., Gustus C. D., Muehlbauer G. J. Quantitative trait loci for Fusarium head blight resistance in barley detected in a two‐rowed by six‐rowed population. Crop Science., 2003., Vol. 43., No. 1., P. 307-318.

GrainGenes Database. Available at: URL (Accessed 29.06.2024).

Abou-Elwafa S. F. Association mapping for yield and yield-contributing traits in barley under drought conditions with genome-based SSR markers. Comptes Rendus. Biologies., 2016., Vol. 339., No. 5-6., P. 153-162.

Makhtoum S., Sabouri H., Gholizadeh A., Ahangar L., Katouzi M. QTLs controlling physiological and morphological traits of barley (Hordeum vulgare L.) seedlings under salinity, drought, and normal conditions. BioTech., 2022., Vol. 11., No. 3., P. 26.

Moralejo M., Swanston J. S., Muñoz P., Prada D., Elía M., Russell J. R., et al. Use of new EST markers to elucidate the genetic differences in grain protein content between European and North American two-rowed malting barleys. Theoretical and Applied Genetics., 2004., Vol. 110., P. 116-125.

Korff M., Wang H., Léon J., Pillen K. AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theoretical and Applied Genetics., 2006., Vol. 112., P. 1221-1231.

See D., Kanazin V., Kephart K., Blake T. Mapping genes controlling variation in barley grain protein concentration. Crop science., 2002., Vol. 42., No. 3., P. 680-685.

Fan C., Zhai H., Wang H., Yue Y., Zhang M., Li J., et al. Identification of QTLs controlling grain protein concentration using a high-density SNP and SSR linkage map in barley (Hordeum vulgare L.). BMC plant biology., 2017., Vol. 17., P. 1-14.

Dahleen L. S., Vander Wal L. J., Franckowiak J. D. Characterization and molecular mapping of genes determining semidwarfism in barley. Journal of Heredity., 2005., Vol. 96., No. 6., P. 654-662.

Taketa S., Yuo T., Sakurai Y., Miyake S., Ichii M. Molecular mapping of the short awn 2 (lks2) and dense spike 1 (dsp1) genes on barley chromosome 7H. Breeding Science., 2011., Vol. 61., No. 1., P. 80-85.

Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes., 2012., Vol. 6., P. 288-295.

Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics., 1980., Vol. 32., P. 314.

Hammer Ø., Harper D.A.T. Past: paleontological statistics software package for education and data analysis. Palaeontologia electronica., 2001., Vol. 4., No. 1., P. 1.

Porras-Hurtado L., Ruiz Y., Santos C., Phillips C., Carracedo Á., Lareu M. V. An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in genetics., 2013., Vol. 4., P. 98.

Kopelman N. M., Mayzel J., Jakobsson M., Rosenberg N. A., Mayrose I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular ecology resources., 2015., Vol. 15., No. 5., P. 1179-1191.

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology., 2005., Vol. 14., No. 8., P. 2611-2620.

Heatmapper. Available at: URL (Accessed 29.06.2024).

The R Project for Statistical Computing. Available at: URL (Accessed 29.06.2024).

Jilal A., Grando S., Henry R. J., Lee L. S., Rice N., Hill H., Baum M., Ceccarelli S. Genetic diversity of ICARDA's worldwide barley landrace collection. Genetic resources and crop evolution., 2008., Vol. 55., P. 1221-1230.

Kolodinska Brantestam A., Von Bothmer R., Dayteg C., Rashal I., Tuvesson S., Weibull J. Genetic diversity changes and relationships in spring barley (Hordeum vulgare L.) germplasm of Nordic and Baltic areas as shown by SSR markers. Genetic Resources and Crop Evolution., 2007., Vol. 54., P. 749-758.

Salgotra R. K., Chauhan B. S. Genetic diversity, conservation, and utilization of plant genetic resources. Genes., 2023., Vol. 14., No. 1., P. 174.

Wang A., Yu Z., Ding Y. Genetic diversity analysis of wild close relatives of barley from Tibet and the Middle East by ISSR and SSR markers. Comptes rendus. Biologies., 2009., Vol. 332., No. 4., P. 393-403.

Metakovsky E., Melnik V.A., Pascual L., Wrigley C.W. How Important Are Genetic Diversity and Cultivar Uniformity in Wheat? The Case of Gliadins. Genes., 2024., Vol. 15., No. 7., P. 927.

Almerekova S., Genievskaya Y., Abugalieva S., Sato K., Turuspekov Y. Population structure and genetic diversity of two-rowed barley accessions from Kazakhstan based on SNP genotyping data. Plants., 2021., V. 10., P. 2025.

Pasam R.K., Sharma R., Malosetti M., van Eeuwijk F.A., Haseneyer G., Kilian B., Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection., BMC plant biology., 2012., Vol. 12., P. 1-22.