DNA BARCODING OF HIPPOPHAE RHAMNOIDES L. COLLECTED FROM NATURAL AND INTRODUCED POPULATIONS IN KAZAKHSTAN

Main Article Content

Authors

S. Almerekova

Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan

M. Yermagambetova

Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan

A. Sumbembayev

Altai Botanical Garden, Ridder 071300, Kazakhstan

A. Imanbayeva

Mangyshlak Experimental Botanical Garden, Aktau 130000, Kazakhstan

Y. Turuspekov

Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan

Abstract

In this study, we analyzed eight samples of Hippophae rhamnoides L. collected in Kazakhstan, along with twenty-five samples of Hippophae species and three outgroup species from NCBI GenBank, using ITS sequences. The alignment of the ITS sequences, which was 639 bp in length with outgroup samples and 642 bp without them, revealed polymorphism, with 31 positions (4.85%) being polymorphic among the ingroup samples. The highest number of polymorphic sites was found in ITS1 (13 sites), followed by ITS2 (10 sites) and the 5.8S rRNA region (8 sites). The maximum likelihood (ML) phylogenetic tree delineated four distinct clades within the Hippophae species. The H. rhamnoides samples from northeastern Kazakhstan clustered with H. rhamnoides ssp. mongolica from GenBank suggests a close genetic relationship. Introduced samples formed separate subclades and clustered with various subspecies from GenBank. Notably, hybrid peaks were observed in the ITS sequences of introduced plants, which were not present in samples from natural populations. This study underscores the utility of ITS sequences in identifying plants from natural and introduced populations of H. rhamnoides and highlights the marker's importance in plant genetic research and biodiversity conservation.

Keywords

Kazakhstan, Elaeagnaceae, Hippophae, DNA barcoding, Internal transcribed spacer, phylogeny

Article Details

References

POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; URL Retrieved 03, July 2024.

Hu J. Main achievements of systematic planting and development of seabuckthorn in China in past 35 years (1985-2020) // Int J Ecol. ‒ 2021. ‒ Vol. 10. ‒ P. 500–8.

Sun K., Chen X., Ma R., et al. Molecular phylogenetics of Hippophae L. (Elaeagnaceae) based on the internal transcribed spacer (ITS) sequences of nrDNA // Plant Syst. Evol. ‒ 2002. ‒ Vol. 235. ‒ P. 121–134. doi: 10.1007/s00606-002-0206-0

Rousi A. The genus Hippophae L. A taxonomic study // Annales Botanici Fennici. ‒ 1971. ‒ Vol. 8. ‒ P. 177-227.

Bartish J.V., Jeppsson N., Bartish G.I., Lu R., Nybom H. Inter- and intraspecific genetic variation in Hippophae (Elaeagnaceae) investigated by RAPD markers // Plant Syst. Evol. ‒ 2000. ‒ Vol. 225. ‒ P. 85–101.

Liu Y., Zhang Y., Li J., Xiang L., Xiong C., Chen S., Sun W. Identification of Hippophae species using DNA barcoding // In The Seabuckthorn Genome. ‒ Cham: Springer International Publishing, 2022. ‒ P. 213-229.

Wang K., Xu Z., Liao X. Bioactive compounds, health benefits and functional food products of sea buckthorn: a review // Crit Rev Food Sci Nutr. ‒ 2021. ‒ Vol. 2021. ‒ P. 1–22. doi: 10.1080/10408398.2021.1905605

Suryakumar G., Gupta A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.) // J Ethnopharmacol. ‒ 2011. ‒ Vol. 138. ‒ P. 268–78. doi: 10.1016/j.jep.2011.09.024

Chen X., Lian Y. The geographical distribution patterns and its formative factors on the genus Hippophae L. // Acta Bot Boreali Occident Sin. ‒ 1994. ‒ Vol. 14. ‒ P. 105–10.

Kubczak M., Khassenova A.B., Skalski B., et al. Hippophae rhamnoides L. leaf and twig extracts as rich sources of nutrients and bioactive compounds with antioxidant activity // Sci Rep. ‒ 2022. ‒ Vol. 12. ‒ P. 1095. doi: 10.1038/s41598-022-05104-2

Chaudhary S., Sharma P. C. DeepSAGE based differential gene expression analysis under cold and freeze stress in seabuckthorn (Hippophae rhamnoides L.) // PLoS ONE. ‒ 2015. ‒ Vol. 10. ‒ e0121982.

He X. H., Si J. H., Zhu L., Zhou D. M., Zhao C. Y., Jia B., Zhu X. L. Modeling habitat suitability of Hippophae rhamnoides L. using MaxEnt under climate change in China: A case study of H. r. sinensis and H. r. turkestanica // Frontiers in Forests and Global Change. ‒ 2023. ‒ Vol. 5. ‒ 1095784.

GBIF. Available online from: URL [accessed on 03, July 2024].

Ui Haq S. A., Mir M. A., Lone S. M., Banoo A., Shafi F. Explicating genetic diversity based on its characterization and determination of antioxidant potential in sea buckthorn (Hippophae spp.) // Mole. Biol. Rep. ‒ 2021. ‒ Vol. 49. ‒ P. 3839–3847. doi: 10.1007/s11033-021-06619-z

Teleszko M., Wojdyło A., Rudzińska M., Oszmiański J., Golis T. Analysis of Lipophilic and Hydrophilic bioactive compounds content in sea buckthorn (Hippophaë rhamnoides L.) berries // J Agric Food Chem. ‒ 2015. ‒ Vol. 63. ‒ P. 4120–9. doi: 10.1021/acs.jafc.5b00564

Ji M., Gong X., Li X., Wang C., Li M. Advanced research on the antioxidant activity and mechanism of polyphenols from hippophae species—a review // Molecules. ‒ 2020. ‒ Vol. 25. ‒ 917. doi: 10.3390/molecules25040917

Wang X., Xu T., Liu Y., Liu Y., Liu J., Li M., et al. Research progress on the relative theory of medicinal plants of Hippophae L World // Chin Med. ‒ 2021. ‒ Vol. 16. ‒ P. 2217–27. doi: 10.3969/j.issn.1673-7202.2021.15.002

Wang Z., Zhao F., Wei P., Chai X., Hou G., Meng Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review // Frontiers in Nutrition. ‒ 2022. ‒ Vol. 9. ‒ 1036295.

Wang R., Wang X., Liu Z., Han Y., Xie Q. Comparative chloroplast genome analysis of four Hippophae rhamnoides subspecies and its phylogenetic analysis // Genetic Resources and Crop Evolution. ‒ 2023. ‒ P. 1-15.

Chengjiang R., Daiqiong L. Function and benefit of Hippophae rhamnoides L. improving eco-environment of Loess Plateau of China // In 12th ISCO Conference, Beijing, China. ‒ 2002.

Constandache C., Peticila A., Dinca L., Vasile D. The usage of Sea Buckthorn (Hippophae Rhamnoides L.) for improving Romania’s degraded lands // AgroLife Scientific Journal. ‒ 2016. ‒ Vol. 5(2).

Letchamo W., Ozturk M., Altay V., Musayev M., Mamedov N. A., Hakeem K. R. An Alternative Potential Natural Genetic Resource: Sea Buckthorn [Elaeagnus rhamnoides (syn.: Hippophae rhamnoides)] // Global Perspectives on Underutilized Crops. ‒ 2018. ‒ P. 25–82. doi: 10.1007/978-3-319-77776-4_2

Lian Y. S., Chen X. L., Sun K., Ma R. A new subspecies of Hippophae (Elaeagnaceae) from China // Novon. ‒ 2003. ‒ Vol. 13(2). ‒ P. 200–202.

Lian Y. S., Lu S. G., Xue S. K., Chen X. L. Biology and chemistry of the genus Hippophae // Gansu Science Technology Press, Lanzhou. ‒ 2000. ‒ P. 1–226.

Husain M., Rathore J. P., Rasool A., Parrey A. A., Vishwakarma D. K., Mahendar K. Seabuckthorn: A multipurpose shrubs species in Ladakh cold desert // Journal of Entomology and Zoology Studies. ‒ 2018. ‒ Vol. 6(2). ‒ P. 1330-1337.

Chen S. Y., Zhang X. Z. Characterization of the complete chloroplast genome of seabuckthorn (Hippophae rhamnoides L.) // Conservation genetics resources. ‒ 2017. ‒ Vol. 9. ‒ P. 623-626.

Zielinska A., Nowak I. Abundance of active ingredients in sea-buckthorn oil // Lipids Health Dis. ‒ 2017. ‒ Vol. 16. ‒ 95. doi: 10.1186/s12944-017-0469-7

Pundir S., Garg P., Dviwedi A., Ali A., Kapoor V. K. Ethnomedicinal uses, phytochemistry and dermatological effects of Hippophae rhamnoides L.: A review // J. Ethnopharmacol. ‒ 2021. ‒ Vol. 266. ‒ 113434. doi: 10.1016/j.jep.2020.113434

Mei D., Ma X., Fu F., Cao F. Research status and development prospects of sea buckthorn (Hippophae rhamnoides L.) resources in China // Forests. ‒ 2023. ‒ Vol. 14(12). ‒ 2461.

Jia D. R., Abbott R. J., Liu T. L., Mao K. S., Bartish I. V., Liu J. Q. Out of the Qinghai–Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophaë rhamnoides (Elaeagnaceae) // New Phytologist. ‒ 2012. ‒ Vol. 194(4). ‒ P. 1123-1133.

Wang H., Liu H., Yang M., Bao L., Ge J. Phylogeographic study of Chinese seabuckthorn (Hippophae rhamnoides subsp. sinensis Rousi) reveals two distinct haplotype groups and multiple microrefugia on the Qinghai‐Tibet Plateau // Ecology and Evolution. ‒ 2014. ‒ Vol. 4(22). ‒ P. 4370-4379.

Abdulina S. A. Checklist of vascular plants of Kazakhstan. Almaty; 1999. P. 87.

Flora of Kazakhstan. Vol. 6. Alma-Ata; 1963. P. 222.

Aidarkhanova G. S., Kubentayev S. A., Izbastina K. S., Bizhanova N. A. Population status and fruit safety assessment of Elaeagnus rhamnoides (L.) A. Nelson (Elaeagnaceae Lindl.) in Kazakhstan // Ukrainian Journal of Ecology. ‒ 2022. ‒ Vol. 12(10). ‒ P. 1-8.

Akiyanova F., Atalikhova A., Jussupova Z., Simbatova A., Nazhbiev A. Current state of ecosystems and their recreational use of the Burabai National Park (Northern Kazakhstan) // Eurasian Journal of Biosciences. ‒ 2019.

Zhamanbaeva G. T., Murzakhmetova M. K., Tuleukhanov S. T., et al. Antitumor Activity of Ethanol Extract from Hippophae Rhamnoides L. Leaves towards Human Acute Myeloid Leukemia Cells In Vitro // Bull Exp Biol Med. ‒ 2014. ‒ Vol. 158. ‒ P. 252–255. doi: 10.1007/s10517-014-2734-3

Vdovina T. A., Isakova E. A., Lagus O. A., Sumbembayev A. A. Selection assessment of promising forms of natural Hippophae rhamnoides (Elaeagnaceae) populations and their offspring in the Kazakhstan Altai Mountains // Biodiversitas Journal of Biological Diversity. ‒ 2024. ‒ Vol. 25(4).

Turuspekov Y., Genievskaya Y., Baibulatova A., Zatybekov A., Kotuhov Y., Ishmuratova M., et al. Phylogenetic taxonomy of Artemisia L. species from Kazakhstan based on matK analyses // Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. ‒ 2018. ‒ Vol. 72(1). ‒ P. 29-37.

Abugalieva S., Volkova L., Genievskaya Y., Ivaschenko A., Kotukhov Y., Sakauova G., Turuspekov Y. Taxonomic assessment of Allium species from Kazakhstan based on ITS and matK markers // BMC plant biology. ‒ 2017. ‒ Vol. 17. ‒ P. 51-60.

Almerekova S., Mukhitdinov N., Abugalieva S. Phylogenetic study of the endemic species Oxytropis almaatensis (Fabaceae) based on nuclear ribosomal DNA ITS sequences // BMC Plant Biology. ‒ 2017. ‒ Vol. 17. ‒ P. 1-9.

Genievskaya Y., Abugalieva S., Zhubanysheva A., Turuspekov Y. Morphological description and DNA barcoding study of sand rice (Agriophyllum squarrosum, Chenopodiaceae) collected in Kazakhstan // BMC Plant Biology. ‒ 2017. ‒ Vol. 17. ‒ P. 1-8.

Almerekova S., Shchegoleva N., Abugalieva S., Turuspekov Y. The molecular taxonomy of three endemic Central Asian species of Ranunculus (Ranunculaceae) // PLoS One. ‒ 2020. ‒ Vol. 15(10). ‒ e0240121.

Favarisova N., Kusmangazinov A., Karelova D., Yermagambetova M., Abugalieva S. I. Optimization of PCR conditions for Agriophyllum, Haloxylon and Salsola microsatellite markers // International Journal of Biology and Chemistry. ‒ 2020. ‒ Vol. 13(1). ‒ P. 57-68.

Kress W. J., Wurdack K. J., Zimmer E. A., Weigt L. A., Janzen D. H. Use of DNA barcodes to identify flowering plants // Proc Natl Acad Sci U S A. ‒ 2005. ‒ Vol. 102(23). ‒ P. 8369–8374.

Cheng T., Xu C., Lei L., Li C., Zhang Y., Zhou S. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity // Mol Ecol Resour. ‒ 2016. ‒ Vol. 16(1). ‒ P. 138–149.

Doyle J. J., Doyle J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue // Phytochem. Bull. ‒ 1987. ‒ Vol. 19. ‒ P. 11-15.

Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT // Nucleic acids symposium series. ‒ 1999. ‒ P. 95-98.

Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies // Mol. Biol. Evol. ‒ 2015. ‒ Vol. 32. ‒ P. 268–274.

Ainouche A. K., Bayer R. J. Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA // American journal of botany. ‒ 1999. ‒ Vol. 86(4). ‒ P. 590-607.

Goryunova S. V., Chikida N. N., Gori M., Kochieva E. Z. Analysis of nucleotide sequence polymorphism of internal transcribed spacers of ribosomal genes in diploid Aegilops (L.) species // Molecular Biology. ‒ 2005. ‒ Vol. 39. ‒ P. 173-176.

Nafisi H., Kaveh A., Kazempour-Osaloo S. Characterizing nrDNA ITS1, 5.8 S and ITS2 secondary structures and their phylogenetic utility in the legume tribe Hedysareae with special reference to Hedysarum // Plos one. ‒ 2023. ‒ Vol. 18(4). ‒ e0283847.

Rongsen L., Ahani H., Shaban M., Esfahani M., Alizade G., Rostampour M., Mahdavian S. The genetic resources of Hippophae genus and its utilization // Int J Scholary Res Gate. ‒ 2013. ‒ Vol. 1. ‒ P. 15-21.

Punina E. O., Machs E. M., Krapivskaya E. E., Kim E. S., Mordak E. V., Myakoshina Y. A., Rodionov A. V. Interspecific hybridization in the genus Paeonia (Paeoniaceae): polymorphic sites in transcribed spacers of the 45S rRNA genes as indicators of natural and artificial peony hybrids // Russian Journal of Genetics. ‒ 2012. ‒ Vol. 48. ‒ P. 684-697.

Liang L. J., Wang E. H., Yang Y. C., Xing B. C., Ji W., Liu F., Liang Z. S. Study on hybrid characteristics of medicinally used cultivated codonopsis species using ribosomal Internal Transcribed Spacer (ITS) sequencing // Molecules. ‒ 2018. ‒ Vol. 23(7). ‒ 1565.

Zhang D., Jiang B., Duan L., Zhou N. Internal transcribed spacer (ITS), an ideal DNA barcode for species discrimination in Crawfurdia Wall.(Gentianaceae) // African Journal of Traditional, Complementary and Alternative Medicines. ‒ 2016. ‒ Vol. 13(6). ‒ P. 101-106.

Zhao L. L., Feng S. J., Tian J. Y., Wei A. Z., Yang T. X. Internal transcribed spacer 2 (ITS 2) barcodes: A useful tool for identifying Chinese Zanthoxylum // Applications in plant sciences. ‒ 2018. ‒ Vol. 6(6). ‒ e01157.

Hong S. Y., Cho K. S., Yoo K. O. Phylogenetic analysis of Korean native Aster plants based on internal transcribed spacer (ITS) sequences // Horticultural Science & Technology. ‒ 2012. ‒ Vol. 30(2). ‒ P. 178-184.

Tan W. H., Chai L. C., Chin C. F. Efficacy of DNA barcode internal transcribed spacer 2 (ITS 2) in phylogenetic study of Alpinia species from Peninsular Malaysia // Physiology and Molecular Biology of Plants. ‒ 2020. ‒ Vol. 26(9). ‒ P. 1889-1896.

Wang C. B., Ma X. G., He X. J. A taxonomic re‐assessment in the Chinese Bupleurum (Apiaceae): Insights from morphology, nuclear ribosomal internal transcribed spacer, and chloroplast (trnH‐psbA, matK) sequences // Journal of Systematics and Evolution. ‒ 2011. ‒ Vol. 49(6). ‒ P. 558-589.

Shiran B., Kiani S., Sehgal D., Hafizi A., ul-Hassan T., Chaudhary M., Raina S. N. Internal transcribed spacer sequences of nuclear ribosomal DNA resolving complex taxonomic history in the genus Vicia L. // Genetic resources and crop evolution. ‒ 2014. ‒ Vol. 61. ‒ P. 909-925.

Tripathi A. M., Tyagi A., Kumar A., Singh A., Singh S., Chaudhary L. B., Roy S. The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India // PloS one. ‒ 2013. ‒ Vol. 8(2). ‒ e57934.