CREATION OF AN EXPRESSION VECTOR FOR MULTIPLEX EDITING OF THE POTATO VACUOLAR INVERTASE GENE USING THE CRISPR/CAS9 SYSTEM

Main Article Content

Authors

A.S. Akhmetollayeva

National Center for Biotechnology, 13/5, Qorghalzhyn Hwy., Astana, 010000, Kazakhstan

Sh.A. Manabayeva

L.N.Gumilyov Eurasian National University, Satpayev st. 2, Astana, 010000, Kazakhstan

Abstract

Creating genetic engineering constructs for plant genome editing requires considerable time, material resources, and specialized equipment. A thorough understanding of the functions and efficacy of each construct element is critical to the design of specialized vectors for specific tasks. This article provides a detailed overview of the process of creating genetic engineering constructs for editing the invertase gene responsible for cold-induced sweetening (CIS) in potato tubers, starting with the design of the variable part of the guide RNA and ending with the assembly of the final expression vector for potato cell transformation. For this purpose, an analysis of the nucleotide sequences of the invertase gene from domestic potato varieties was performed, along with a comparative analysis the data from the NCBI database. Optimal targets for gene editing using CRISPR/Cas9 technology were identified and the process of cloning two expression vectors for multiple genome editing was described. The expression vectors obtained allow the knockout of the potato acid invertase gene VInv/Pain-1. Considering that the expression level of Cas9 is a key factor for the efficiency of genome editing, a second expression vector containing the Tomato bushy stunt virus suppressor gene p19 was created to enhance the expression of this gene and the editing efficiency.

Keywords

CRISPR/Cas9, sgRNA, sweetening of tubers, potato vacuolar invertase gene, expression vector

Article Details

References

Tussipkan D., Manabayeva S. A. Employing CRISPR/Cas technology for the improvement of potato and other tuber crops// Frontiers in plant science. ‒ 2021. ‒ 12:747476. Crossref.

Ahmad M. Plant breeding advancements with "CRISPR-Cas" genome editing technologies will assist future food security // Frontiers in plant science. ‒ 2023. ‒ 14, 1133036. Crossref.

Aljabali A.A., El-Tanani M., Tambuwala M. M. Principles of CRISPR-Cas9 technology: Advancements in genome editing and emerging trends in drug delivery // Journal of Drug Delivery Science and Technology. ‒ 2024. ‒ T. 92. ‒ C. 105338. Crossref.

Anzalone A. V., Koblan L. W., Liu D. R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors // Nature biotechnology. ‒ 2020. ‒ 38(7):824-844. https://doi:10.1038/s41587-020-0561-9.

Cardi T., Murovec J., Bakhsh A., Boniecka J., Bruegmann T., Bull S. E., Eeckhaut T., Fladung M., Galovic V., Linkiewicz A., Lukan T., Mafra I., Michalski K., Kavas M., Nicolia A., Nowakowska J., Sági L., Sarmiento C., Yıldırım K., Zlatković M., Hensel G., Van Laere K. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation // Trends in plant science. ‒ 2023. ‒ 28(10), 1144–1165. Crossref.

Zeng Y., Wen J., Zhao W., Wang Q., Huang W. Rational Improvement of Rice Yield and Cold Tolerance by Editing the Three Genes OsPIN5b, GS3, and OsMYB30 With the CRISPR-Cas9 System // Frontiers in plant science. ‒ 2020. ‒ 10, 1663. Crossref.

Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J. L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew // Nature biotechnology ‒ 2014. ‒ 32(9), 947–951. Crossref.

Tiwari J. K., Jeevalatha A., Tuteja N., Khurana S. M. Genome editing (CRISPR-Cas)-mediated virus resistance in potato (Solanum tuberosum L.) //Molecular biology reports. ‒ 2022. ‒ 49(12), 12109–12119. Crossref.

Hillary V. E., Ceasar S. A. A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering // Molecular Biotechnology. ‒ 2023. ‒ T. 65, № 3. ‒ C. 311-325. Crossref

Hua K., Han P., Zhu J. K. Improvement of base editors and prime editors advances precision genome engineering in plants// Plant Physiol. ‒ 2022. ‒ 188(4):1795-1810. https://doi:10.1093/plphys/kiab591.

Ran F. A., Hsu P. D., Wright J., Agarwala V., Scott D. A., Zhang F. Genome engineering using the CRISPR-Cas9 system // Nat Protoc. ‒ 2013. ‒ T. 8, № 11. ‒ C. 2281-2308. Crossref.

Menzorov A., Lukyanchikova V., Korablev A., Serova I., Fishman V. Genome editing using CRISPR/ Cas9 system: a practical guide // Vavilov Journal of Genetics and Breeding. ‒ 2016. ‒ T. 20. ‒ C. 930-944. Crossref.

Hsu P. D., Lander E. S., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering // Cell, ‒ 2014. ‒ 157(6):1262-1278. https://doi:10.1016/j.cell.2014.05.010.

Erdoğan İ., Cevher-Keskin B., Bilir Ö., Hong Y., Tör M. Recent Developments in CRISPR/Cas9 Genome-Editing Technology Related to Plant Disease Resistance and Abiotic Stress Tolerance // Biology. ‒ 2023. ‒ 12(7):1037. https://doi:10.3390/biology12071037

Koblan L. W., Doman J. L., Wilson C. A.O., Levy J. M., Tay T., Newby G. A., Maianti J. P., Raguram A., Liu D. R. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction // Nat. Biotechnol. ‒ 2018. ‒ 36(9):843-846. https://doi:10.1038/nbt.4172.

Movahedi A., Aghaei-Dargiri S., Li H., Zhuge Q., Sun W. CRISPR Variants for Gene Editing in Plants: Biosafety Risks and Future Directions // Int J Mol Sci. ‒ 2018. ‒ 24(22), 16241. Crossref.

Gerashchenkov G., Rozhnova N., Kuluev B., Kiryanova O., Gumerova G., Knyazev A., Vershinina Z., Mikhaylova E., Dmitry C., Matniyazov R., Baymiev A., Gubaidullin I., Baimiev A., Chemeris A. Design of Guide RNA for CRISPR/Cas Plant Genome Editing // Molecular Biology. ‒ 2020. ‒ T. 54. ‒ C. 24-42. Crossref.

Capdeville N., Schindele P., Puchta H. Getting better all the time — recent progress in the development of CRISPR/Cas-based tools for plant genome engineering // Current Opinion in Biotechnology. ‒ 2023. ‒ T. 79. ‒ C. 102854. Crossref.

Zhu X., Richael C., Chamberlain P., Busse J., Bussan A., Jiang J., Bethke P. Vacuolar Invertase Gene Silencing in Potato (Solanum tuberosum L.) Improves Processing Quality by Decreasing the Frequency of Sugar-End Defects // PloS one. ‒ 2014. ‒ T. 9. ‒ C. e93381. Crossref.

Draffehn A. M., Meller S., Li L., Gebhardt C. Natural diversity of potato (Solanum tuberosum) invertases // BMC plant biology. -2010. ‒ 10, 271. Crossref

Kumar G. N., Iyer S., Knowles N. R., Knowles N. R. Extraction of RNA from fresh, frozen, and lyophilized tuber and root tissues // Journal of agricultural and food chemistry .‒ 2007. ‒ 55(5), 1674–1678. Crossref.

Vennapusa A. R., Somayanda I. M., Doherty C. J., Jagadish S. V. K. A universal method for high-quality RNA extraction from plant tissues rich in starch, proteins and fiber // Scientific Reports. ‒ 2020. ‒ T. 10, № 1. ‒ C. 16887. Crossref.

Nadakuduti S.S., Starker C.G., Voytas D.F., Buell C.R., Douches D.S. Genome Editing in Potato with CRISPR/Cas9. In: Qi, Y. (eds) Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology, vol 1917. Humana, New York, NY. 2019. ‒ Crossref.

Kor S. D., Chowdhury N., Keot A. K., Yogendra K., Chikkaputtaiah C., Sudhakar Reddy P. RNA Pol III promoters-key players in precisely targeted plant genome editing // Front Genet. ‒ 2023. ‒ 4;13:989199. https://doi:10.3389/fgene.2022.989199.

Rozhnova N. A., Gerashchenkov G., Chemeris A. The creation of an expression vector for genome editing of the EDS 1 gene // Biomics. ‒ 2019. ‒ T. 11. ‒ C. 422-429. Crossref.

Abeuova L., Kali B., Tussipkan D., Akhmetollayeva A., Ramankulov Y., Manabayeva S. CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato //Transgenic Res. ‒ 2023. ‒ 32(5):383-397. https://doi:10.1007/s11248-023-00356-8.

Wu S., Kyaw H., Tong Z., Yang Y., Wang Z., Zhang L., Deng L., Zhang Z., Xiao B., Quick W. P., Lu T., Xiao G., Qin G., Cui X. a. A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants // The Crop Journal. ‒ 2024. ‒ 10.1016/j.cj.2024.01.010. Crossref.

Ursache R., Fujita S., Dénervaud Tendon V., Geldner N. Combined fluorescent seed selection and multiplex CRISPR/Cas9 assembly for fast generation of multiple Arabidopsis mutants // Plant Methods. ‒ 2021. ‒ T. 17, № 1. ‒ C. 111. Crossref.

Gao S. J., Damaj M. B., Park J. W., Beyene G., Buenrostro-Nava M. T., Molina J., Wang X., Ciomperlik J. J., Manabayeva S. A., Alvarado V. Y., Rathore K. S., Scholthof H. B., & Mirkov T. E. Enhanced transgene expression in sugarcane by co-expression of virus-encoded RNA silencing suppressors // PLoS One. ‒2013. ‒ 14; 8(6):e66046. https://doi: 10.1371/journal.pone.0066046.

Arzola, L., Chen, J., Rattanaporn, K., Maclean, J. M., & McDonald, K. A. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein. International journal of molecular sciences. ‒ 2011. ‒ 12(8): р. 4975–4990. Crossref.