Development of a real-time PCR test system for the identification of Francisella tularensis
Main Article Content
Authors
Abstract
Tularaemia is caused by the Gram-negative bacterium Francisella tularensis, which has three subspecies: holarctica, mediacia and tularensis. Due to the high virulence of the pathogen, the wide range of susceptible animals and the presence of numerous vectors and natural reservoirs, the development of sensitive diagnostic methods for the epidemiological surveillance of tularemia is crucial. New opportunities for understanding the epidemiological situation of tularemia are opening up with the use of new molecular analysis technologies for typing F. tularensis. The development and use of molecular methods for the diagnosis of tularemia is important in this context. The present study developed a protocol for detection of F. tularensis by real-time polymerase chain reaction (qPCR). The selection of primers and a fluorescent probe was based on the aligned sequences of ISFtu1 (multi-copy insertion element). qPCR conditions were optimised, including the determination of the optimal annealing and extension temperatures for the primers. Sensitivity was tested using successive 4-fold dilutions of DNA derived from F. tularensis subsp. mediasiatica, indicating a minimum sensitivity threshold of 15 genomic equivalents per reaction. Two subspecies of F. tularensis (subsp. mediasiatica and subsp. holarctica), 27 non-target bacterial species and 3 eukaryotic organisms were used to assess specificity.
Keywords
Tularemia, Real-time PCR, Specificity, Pathogen detection, Francisella tularensis, Molecular diagnostics
Article Details
References
Timofeev V, Bakhteeva I, Titareva G, Kopylov P, Christiany D, Mokrievich A, Dyatlov I, Vergnaud G. Russian isolates enlarge the known geographic diversity of F. tularensis subsp. mediasiatica // PloS one. – 2017. – Т. 12. – №. 9. – С. e0183714.
Mokrievich A.N., Timofeev V.S., Kudryavtseva T.Yu., Ulanova G.İ., Karbyşeva S.B., Mironova R.İ., Vahrameeva G.M., Gubareva T.İ., Pavlov VM., Dyatlov İ.A. Vydelenie sredneaziatskogo podvida tulyaremiinogo mikroba na territorii Altaiskogo kraya // Problemy osobo opasnyh infektsii. – 2013. – №. 1, – С. 66-69.
List of Procariotic names with Standing in Nomenclature (LPSN)./ Euzéby J. URL: URL F..html (дата обращения 15.01.2023).
Molins-Schneekloth C.R., Belisle J.T., Petersen J.M Genomic markers for differentiation of F. tularensis subsp. tularensis AI and A. II strains // Appl. Environ. Microbiol. – 2008. – Vol. 74. – №. 1. – С. 336-341.
Gunnell M.K., Lovelace C.D., Satterfield B.A., Moore E.A., O’Neill K.L., Robison R.A. A multiplex real-time PCR assay for the detection and differentiation of F. tularensis subspecies // J. Med. Microbiol. – 2012. – Т. 61. – №. 11. – С. 1525-1531.
Olsufjev N. G., Meshcheryakova I. S. Subspecific taxonomy of F. tularensis McCoy and Chapin 1912 //International Journal of Systematic and Evolutionary Microbiology. – 1983. – Т. 33. – №. 4. – С. 872-874.
Farlow, J., Wagner, D. M., Dukerich, M., Stanley, M., Chu, M., Kubota, K., ... & Keim, P. F. tularensis in the United States //Emerging infectious diseases. – 2005. – Т. 11. – №. 12. – С. 1835.
Popov, N. V., Sludskii, A. A., Zavıalov, E. V., Udovikov, A. I., Tabachişin, V. G., Anikin, V. V., Konnov N.P. Otsenka vozmojnoi roli kamenki-plıasuni (Oenanthe isabellind) i drugih ptits v mehanizme enzootii chumy //Povoljskii kologicheskii jurnal. – 2007. – №. 3. – С. 215-226.
Meka-Mechenko, T., Aikimbayev, A., Kunitza, T., Ospanov, K., Temiralieva, G., Dernovaya, V. Clinical and epidemiological characteristic of tularemia in Kazakhstan // Przeglad epidemiologiczny. – 2003. – Т. 57. – №. 4. – С. 587-591.
Kunitsa, T., Izbanova, U., Meka-Mechenko, T., Yakupov, V. The modern clinical and epidemical peculiarities of manifestation of tularemia in Kazakhstan urbanized territories // Life without danger Health Prevention Longevity. – 2013. – Т. 8. – №. 2. – С. 41-6
Meka-Mechenko, T., Aikimbayev, A., Kunitza, T., Ospanov, K., Temiralieva, G., Dernovaya, V. Abdirassilova, A. Clinical and epidemiological characteristic of tularemia in Kazakhstan //Przegladepidemiologiczny. – 2003. – Т. 57. – №. 4. – С. 587-591.
Kuatbayeva A.M., Zhamalbekova Z.Z., Turliev Z.S., Usenov U.B., Yesimzhanov B.S., Kalitanova A.D. Characterization of tularemia foci in the Republic of Kazakhstan from 2000 to 2020 //Frontiers in Epidemiology. – 2024. – Т. 4. – С. 1291690.
Molins, C. R., Carlson, J. K., Coombs, J., Petersen, J. M. Identification of F. tularensis subsp. tularensis A1 and A2 infections by real-time polymerase chain reaction //Diagnostic microbiology and infectious disease. – 2009. – Т. 64. – №. 1. – С. 6-12.
Mignard S., Flandrois J. P. 16S rRNA sequencing in routine bacterial identification: a 30-month experiment //Journal of microbiological methods. – 2006. – Т. 67. – №. 3. – С. 574-581.
Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT //Nucleic acids symposium series. – 1999. – Т. 41. – №. 41. – С. 95-98.
Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., Madden, T. L.. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction //BMC bioinformatics. – 2012. – Т. 13. – С. 1-11.
Zargar, A., Maurin, M., Mostafavi, E. Tularemia, a re-emerging infectious disease in Iran and neighboring countrie //Epidemiology and health. – 2015. – Т. 37.
Titball R. W., Petrosino J. F. F. tularensis genomics and proteomics //Annals of the New York Academy of Sciences. – 2007. – Т. 1105. – №. 1. – С. 98-121.
Bartling A. M. F. tularensis Insertion Sequence Elements Contribute to Differential Gene Expression: Theses & Dissertations. Master of Science University of Nebraska Medical Center – 2018.
Larsson, P., Oyston, P.C., Chain, P., Chu, M.C., Duffield, M., Fuxelius, H.H., Garcia, E., Hälltorp, G., Johansson, D., Isherwood, K.E. and Karp, P.D. The complete genome sequence of F. tularensis, the causative agent of tularemia //Nature genetics. – 2005. – Т. 37. – №. 2. – С. 153-159.
Versage, J. L., Severin, D. D., Chu, M. C., Petersen, J. M. Development of a multitarget real-time TaqMan PCR assay for enhanced detection of F. tularensis in complex specimens //Journal of clinical microbiology. – 2003. – Т. 41. – №. 12. – С. 5492-5499.
Fujita, O., Tatsumi, M., Tanabayashi, K., Yamada, A. Development of a real-time PCR assay for detection and quantification of F. tularensis //Japanese Journal of Infectious Diseases. – 2006. – Т. 59. – №. 1. – С. 46-51.
Mitchell J. L., Chatwell N., Christensen D., Diaper, H., Minogue T. D., Parsons T. M., Walker B., Weller S.A. Development of real-time PCR assays for the specific detection of Francisella tularensis ssp. tularensis, holarctica and mediaasiatica //Molecular and Cellular Probes. – 2010. – Т. 24. – №. 2. – С. 72-76.
Kugeler, K. J., Pappert, R., Zhou, Y., & Petersen, J. M. Real-time PCR for F. tularensis types A and B //Emerging Infectious Diseases. – 2006. – Т. 12. – №. 11. – С. 1799.
Zhang, F., Wang, X., Yu, G., Gao, J., Niu, H., Zhao, J. (2021). Detection and Genotyping of F. tularensis in Animal Hosts and Vectors from Six Different Natural Landscape Areas, Gansu Province, China //Computational and Mathematical Methods in Medicine. – 2021. – Т. 2021.
Suzuki, J., Hashino, M., Matsumoto, S., Takano, A., Kawabata, H., Takada, N., Watarai, M Detection of F. tularensis and analysis of bacterial growth in ticks in Japan //Letters in applied microbiology. – 2016. – Т. 63. – №. 4. – С. 240-246.
Ammam I., Brunet C.D., Boukenaoui-Ferrouk N., Peyroux J., Berthier S., Boutonnat J., Maurin M. F. tularensis PCR detection in Cape hares (Lepus capensis) and wild rabbits (Oryctolagus cuniculus) in Algeria //Scientific Reports. – 2022. – Т. 12. – №. 1. – С. 21451.