OPTIMIZATION OF MULTIPLE-LOCUS VARIABLE-NUMBER TANDEM-REPEAT ANALYSIS FOR BACILLUS ANTRACIS GENOTYPING
Main Article Content
Authors
A.B. Shevtsov
National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 000001, Kazakhstan
V.B. Lutsay
National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 000001, Kazakhstan
A.D. Kairzhanova
National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 000001, Kazakhstan
L.Yu. Lukhnova
M. Aikimbayev's Kazakh Scientific Centre for Quarantine and Zoonotic Diseases, 14, Kapalskaya str., Almaty, 050056, Kazakhstan
T. Zh. Kulatay
National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 000001, Kazakhstan
U.A. Izbanova
M. Aikimbayev's Kazakh Scientific Centre for Quarantine and Zoonotic Diseases, 14, Kapalskaya str., Almaty, 050056, Kazakhstan
T.B. Karibaev
National Reference Center for Veterinary Medicine, 22/3, 150 let Abaya str., Nur-Sultan, 010000, Kazakhstan
A.V. Shustov
National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 000001, Kazakhstan
Abstract
Bacillus anthracis is the causative agent of anthrax, a highly dangerous human and veterinary disease. B. anthracis has high pathogenicity, resulting in a high mortality rate, with possible long-term preservation of the live pathogen in environmental conditions. Thus, genotyping of circulating B. anthracis strains is an integral part of epidemiological surveillance worldwide. Multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) is a highly discriminatory method for genotyping bacterial species with a conserved genome such as B. anthracis. Although there is already a well-established MLVA typing scheme, protocol optimization and verification of the results are required in certain cases. This paper presents the results of optimization of the MLVA-31 protocol, which was verified in four B. anthracis strains that were isolated in Kazakhstan. The actual VNTR repeat sizes differed from those obtained by capillary electrophoresis at all VNTR loci. Moreover, absence of B. anthracis reference strains made allele identification difficult for 90% of the loci. In six loci, the actual sizes differed by one or more VNTRs from the sizes defined by capillary electrophoresis. These results indicate that availability of B. anthracis reference strains will allow for verification of genotyping results, regardless of the particular reagents and equipment used for capillary electrophoresis, thus enabling more efficient epidemiological monitoring at the local and global levels.
Keywords
Bacillus anthracis, VNTR, MLVA, genotyping, epidemiology
Article Details
References
Guinebretiere M.H., Auger S., Galleron N., Contzen M., De Sarrau B., De Buyser M.L., Lamberet G., Fagerlund A., Granum P.E., Lereclus D., De Vos P., Nguyen-The C., Sorokin A. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. Int J Syst Evol Microbiol, 2013, vol. 63, no. 1, pp. 31-40. doi: 10.1099/ijs.0.030627-0.
Bravo A., Gomez I., Porta H., Garcia-Gomez B.I., Rodriguez-Almazan C., Pardo L., Soberon M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb Biotechnol, 2013, vol. 6 no. 1, pp. 17-26. doi: 10.1111/j.1751-7915.2012.00342.x.
Agata N., Ohta M., Mori M. Production of an emetic toxin, cereulide, is associated with a specific class of Bacillus cereus. Curr Microbiol, 1996, vol. 33, no. 1, pp. 67-69. doi: 10.1007/s002849900076
Nilegaonkar S.S., Zambare V.P., Kanekar P.P., Dhakephalkar P.K., Sarnaik S.S. Production and partial characterization of dehairing protease from Bacillus cereus MCM B-326. Bioresour Technol, 2007, vol. 98, no. 6, pp. 1238-45. PMID: 16782331
Lampis S., Zonaro E., Bertolini C., Bernardi P., Butler C.S., Vallini G.Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Fact, 2014, vol. 13, no. 1, pp. 35. doi: 10.1186/1475-2859-13-35.
Ordenes-Aenishanslins N.A., Saona L.A., Durán-Toro V.M., Monrás J.P., Bravo D.M., Pérez-Donoso J.M. Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb Cell Fact, 2014, vol. 13, no. 1, pp. 90. doi: 10.1186/s12934-014-0090-7.
Basi-Chipalu S., Dischinger J., Josten M., Szekat C., Zweynert A., Sahl H.G., Bierbaum G. Pseudomycoicidin, a Class II Lantibiotic from Bacillus pseudomycoides. Appl Environ Microbiol, 2015, vol. 81, no. 10, pp. 3419-3429. doi: 10.1128/AEM.00299-15.
Hu X., Swiecicka I., Timmery S., Mahillon J. Sympatric soil communities of Bacillus cereus sensu lato: population structure and potential plasmid dynamics of pXO1- and pXO2-like elements. FEMS Microbiol Ecol, 2009, vol. 70, no. 3, pp. 344-355. doi: 10.1111/j.1574- 6941.2009.00771.x.
Pilo P., Frey J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. Infect Genet Evol, 2018, vol. 64, pp. 115-125. doi: 10.1016/j.meegid.2018.06.024.
Keim P., Klevytska A.M., Price L.B., Schupp J.M., Zinser G., Smith K.L., Hugh-Jones M.E., Okinaka R., Hill K.K., Jackson P.J. Molecular diversity in Bacillus anthracis. J Appl Microbiol, 1999, vol. 87, no. 2, pp. 215-217.
Price, L. B., M. E. Hugh-Jones, P. Jackson, and P. Keim. Natural genetic diversity in the protective antigen gene of Bacillus anthracis. J. Bacteriol, 1999, vol. 181, pp. 2358–2362. doi: 10.1007/978-3-662-05767-4_2
Keim P., Price L.B., Klevytska A.M., Smith K.L., Schupp J.M., Okinaka R., Jackson P.J., Hugh-Jones M.E. Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol, 2000, vol. 182, no. 10, pp. 2928-2936. doi: 10.1007/978-1-59745-569-5_6
Le Fleche P., Hauck Y., Onteniente L., Prieur A., Denoeud F., Ramisse V., Sylvestre P., Benson G., Ramisse F., Vergnaud G.A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis. BMC Microbiol, 2001, vol. 1, pp. 2. doi: 10.1007/s00294-004-0539-z
Van Ert MN, Easterday WR, Huynh LY, Okinaka RT, Hugh-Jones ME, et al. Global genetic population structure of Bacillus anthracis. PLoS One, 2007, vol. 2. doi: 10.1371/journal.pone.0000461
Lista F, Faggioni G, Valjevac S, Ciammaruconi A, Vaissaire J, et al. Genotyping of Bacillus anthracis strains based on automated capillary 25-loci multiple locus variable- number tandem repeats analysis. BMC Microbiol, 2006, vol. 6, pp. 33. doi: 10.1186/1471-2180-6-33
Beyer W, Bellan S, Eberle G, Ganz HH, Getz WM, et al. Distribution and molecular evolution of Bacillus anthracis genotypes in Namibia. PLoS Negl Trop Dis, 2012, vol. 6. doi: 10.1371/journal.pntd.000153
Thierry S., Tourterel C., Le Flèche P., Derzelle S., Dekhil N., Mendy C., Colaneri C., Vergnaud G., Madani N.Genotyping of French Bacillus anthracis strains based on 31-loci multi locus VNTR analysis: epidemiology, marker evaluation, and update of the internet genotype database. PLoS One, 2014, vol. 9, pp. 6. doi: 10.1371/journal.pone.0095131.
Keim P., Van Ert M.N., Pearson T., Vogler A.J., Huynh L.Y., Wagner D.M. Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect Genet Evol, 2004, vol. 4, no. 3, pp. 205-213. doi: 10.1016/j.meegid.2004.02.005
Smith K.L., DeVos V., Bryden H., Price L.B., Hugh-Jones M.E., Keim P. Bacillus anthracis diversity in Kruger National Park. J Clin Microbiol, 2000, vol. 38, no. 10, pp. 3780-3784. PMID: 11015402
Shevtsov A., Ramanculov E., Shevtsova E., Kairzhanova A., Tarlykov P., Filipenko M., Dymova M., Abisheva G., Jailbekova A., Kamalova D., Chsherbakov A., Tulegenov S., Akhmetova A., Sytnik I., Karibaev T., Mukanov K. Genetic diversity of Brucella abortus and Brucella melitensis in Kazakhstan using MLVA-16. Infect Genet Evol, 2015, vol. 34, pp. 173-80. doi: 10.1016/j.meegid.2015.07.008.
Kattar M.M., Jaafar R.F., Araj G.F., Le Flèche P., Matar G.M., Abi Rached R., Khalife S., Vergnaud G. Evaluation of a multilocus variable-number tandem-repeat analysis scheme for typing human Brucella isolates in a region of brucellosis endemicity. J Clin Microbiol, 2008, vol. 46, no. 12, pp. 3935-3940. doi: 10.1128/JCM.00464-08.
Pasqualotto A.C., Denning D.W., Anderson M.J. A cautionary tale: lack of consistency in allele sizes between two laboratories for a published multilocus microsatellite typing system. J Clin Microbiol, 2007, vol. 9, pp. 522–528. doi: 10.1128/JCM.02136-06.
Duodu S., Wan X., Tandstad N.M., Larsson P., Myrtennäs K., Sjödin A., Forsman M., Colquhoun D.J. An improved multiple-locus variable-number of tandem repeat analysis (MLVA) for the fish pathogen Francisella noatunensis using capillary electrophoresis. BMC Vet Res, 2013, vol. 9, pp. 252. doi: 10.1186/1746-6148-9-252.
Cline J, Braman JC, Hogrefe HH. PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res, 1996, vol. 24, pp. 3546–3551. doi: 10.1093/nar/24.18.3546.
Lorenz T.C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp, 2012, vol. 63, pp. 3998. doi: 10.3791/3998.