DEVELOPMENT OF A REAL-TIME POLYMERASE CHAIN REACTION PROTOCOL FOR DIAGNOSIS OF PASTEURELLOSIS

Main Article Content

Authors

A.O. Amirgazin

National Center for Biotechnology, Korgalzhyn road 13/5, Nur-Sultan, 010000, Kazakhstan

A.D. Kairzhanova

National Center for Biotechnology, Korgalzhyn road 13/5, Nur-Sultan, 010000, Kazakhstan

A.V. Shustov

National Center for Biotechnology, Korgalzhyn road 13/5, Nur-Sultan, 010000, Kazakhstan

A.B. Shevtsov

National Center for Biotechnology, Korgalzhyn road 13/5, Nur-Sultan, 010000, Kazakhstan

Abstract

Pasteurellosis is a zoonotic disease of vertebrate animals, for which the etiological agent is Pasteurella multocida. The continuous high prevalence of P. multocida and regular periodic outbreaks of pasteurellosis in both wild and domestic animals, especially in the wild saiga populations in Kazakhstan, underscores the importance of developing a local molecular diagnostic system. Accordingly, the goal of the present study was to develop a real-time polymerase chain reaction (PCR) protocol to identify all serovars of P. multocida. The envC, ruvB, and QseC genes were chosen as targets, and real-time PCR protocols were developed using three pairs of primers and corresponding fluorescent probes characterized by high efficiency, sensitivity, and specificity. The sensitivity of the developed protocols to the sequences of the envC and QseC genes was 2.38 fg, and that to the ruvB gene was 76 pg. The high specificity of the PCR protocol was confirmed with a collection of samples from 92 species of bacteria and three species of higher eukaryotic organisms. The commercialization of these developed protocols will allow for the production of highly effective PCR test systems, and improve the diagnosis and treatment of pasteurellosis.

Keywords

real-time PCR, Pasteurella multocida, PCR diagnostics, PCR optimization, PCR specificity, PCR sensitivity

Article Details

References

Mutters R., Ihm P., Pohl S., Frederiksen W., Mannheim W. Reclassification of the Genus Pasteurella Trevisan 1887 on the Basis of Deoxyribonucleic Acid Homology, with Proposals for the New Species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pasteurella langaa. International Journal of Systematic and Evolutionary Microbiology, 1985, vol. 35, pp. 309–322.

Carter G. R. Pasteurellosis: Pasteurella multocida and Pasteurella hemolytica. Advances in Veterinary Sciences, 1967, vol. 11, pp. 321–379.

Rimler R. B., Rhoades K. R. Serogroup F, a new capsule serogroup of Pasteurella multocida. Journal of Clinical Microbiology, 1987, vol. 25, pp. 615–618.

Townsend K. M., Boyce J. D., Chung J. Y., Frost A. J., Adler B. Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system Journal of Clinical Microbiology, 2001, vol. 39, pp. 924-929.

Heddleston K. L., Gallagher J. E., Rebers P. A. Fowl cholera: gel diffusion precipitin test for serotyping Pasteurella multocida from avian species. Avian Diseases, 1972, vol. 16, pp. 925–936.

Harper M., John M., Turni C., Edmunds M., St Michael F., Adler B., et al. Development of a rapid multiplex PCR assay to genotype Pasteurella multocida strains by use of the lipopolysaccharide outer core biosynthesis locus. Journal of Clinical Microbiology, 2015, vol. 53, pp. 477–485. Crossref.

Veken J. W., et al. Binding of bovine transferrin by Pasteurella multocida serotype B:2,5, a strain which causes haemorrhagic septicaemia in buffalo and cattle. FEMS microbiology letters, 1994, vol. 115, no. 2-3, pp. 253-257.

Wilkie I. W., Harper M., Boyce J. D., Adler B. Pasteurella multocida: Diseases and Pathogenesis. Current Topics in Microbiology and Immunology, 2012, vol. 361, pp. 1-22.

Peng Z., Liang W., Wang F., Xu Z., Xie Z., Lian Z., Hua L., Zhou R., Chen H. and Wu B. Genetic and Phylogenetic Characteristics of Pasteurella multocida Isolates From Different Host Species. Frontiers in Microbiology, no. 9, pp. 1408. Crossref.

Moustafa A. M. et al. Comparative genomic analysis of Asian haemorrhagic septicaemia-associated strains of Pasteurella multocida identifies more than 90 haemorrhagic septicaemia-specific genes. PLoS One, 2015, vol. 10, no. 7.

Orynbayev M., Sultankulova K., Sansyzbay, A., Rystayeva R., Shorayeva K., Namet A., Fereidouni S., Ilgekbayeva G., Barakbayev K., Kopeyev S. and Kock, R. Biological characterization of Pasteurella multocida present in the Saiga population. BMC microbiology, 2019, vol. 19, no. 1, pp. 37.

Kharb S. and Charan S. Mouse model of haemorrhagic septicaemia:dissemination and multiplication of Pasteurella multocida B:2 in vital organs after intranasal and subcutaneous challenge in mice. Veterinary Research Communications, 2013, vol. 37, no. 1, pp. 59–63.

Hedau M., Kurkure N. V., Jangir B. L., Chopde N. A., Kalorey D. R. and Bhandarkar A. G. Pathological diagnosis of an outbreak of pasteurellosis in buffaloes of Vidharbha region in India. Indian Journal of Veterinary Pathology, 2017, vol. 41, no. 1, pp. 38-40.

Convention on Migratory Species (2015). Available at: URL rvation_Status_Eng.pdf

Kock R., Orynbayev M., Robinson S., Zuther S., Singh J., Beauvais W., Morgan R., Kerimbayev A., Khomenko S., Martineau M., Rystaeva R., Omarova Z., Wolfs S.,Hawotte F., Radoux J., Milner-Gulland. J. Saigas on the brink: multi-disciplinary analysis of the factors influencing a mass die-off event. Science Advances, 2018. Available at: Crossref 10.1126/sciadv.aao2314.

OIE, World Organisation for Animal Health. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Paris, France, 2012, vol. 7, pp.1440.

Al-Maary K. S, Dawoud T. M, Mubarak A. S, Hessain A. M, Galal H. M, Kabli S. A, Mohamed M. I. Molecular characterization of the capsular antigens of Pasteurella multocida isolates using multiplex PCR. Saudi journal of biological sciences, 2017, vol. 24, no. 2. pp. 367-370.

Rajkhowa S. Development of a novel multiplex PCR assay for rapid detection of virulence associated genes of Pasteurella multocida from pigs. Letters in applied microbiology, 2015, vol. 61, no. 3, pp. 293-298.

Arumugam N. D., Ajam N., Blackall P. J., Asiah N. M., Ramlan M., Maria J., Yuslan S., Thong K. L. 2011. Capsular serotyping of Pasteurella multocida from various animal hosts – a comparison of phenotypic and genotypic methods. Tropical Biomedicine, 2011, vol. 28, no. 1 pp. 55-63.

Cao P., Guo D., Liu J., Jiang Q., Xu Z. and Qu L. Genome-Wide Analyses Reveal Genes Subject to Positive Selection in Pasteurella multocida. Frontiers in Microbiology, 2017, vol. 8, pp. 961.

Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series, vol. 41, no. 41, pp. 95-98.

US National Library of Medicine National Institutes of Health. Available at:URL.

Calculator for determining the number of copies of a template. Available at:URL.

Miflin J. K., Blackall P. J. Development of a 23S rRNA-based PCR assay for the identification of Pasteurella multocida. Letters in applied microbiology, 2001, vol. 33, pp. 216-221.

Rajkhowa S. Development of a novel multiplex PCR assay for rapid detection of virulence associated genes of Pasteurella multocida from pigs. Letters in applied microbiology, 2015, vol. 61, pp. 293-298.

Lichtensteiger C. A., Steenbergen S. M., Lee R. M., Polson D. D. and Vimr E. R. Direct PCR analysis for toxigenic Pasteurella multocida. Journal of clinical microbiology, 1996, vol. 34, pp. 3035-3039.

Simonović A., Trifunović-Momčilov M., Raspor M., Cingel A. D., Bogdanović M., Dragićević M. and Subotić A. Dimethyl sulfoxide improves sensitivity and specificity of RT-PCR and qRT-PCR amplification of low-expressed transgenes. Archives of Biological Sciences, 2012, vol. 64, no. 3, pp. 865-876.

Klee S. R., Tyczka J., Ellerbrok H., Franz T., Linke S., Baljer G. and Appel B. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiology, 2006, vol. 6, no. 1, pp. 2.

Roux K. H. Optimization and troubleshooting in PCR. Cold Spring Harbor Protocols, 2009, vol. 2009, no. 4.

Amirgazin, A. O., Shvedyuk, V. B., Kuibagarov, M. A., Karibaev, T. B. and Shevtsov, A. B. PCR optimization protocol algorithm for identification of microorganisms using Pasteurella multocida. Eurasian Journal of Applied Biotechnology, 2017, no. 3, pp. 33-42.

Innis M., Gelfand D. Optimization of PCR: conversations between Michael and David. PCR applications, 1999, pp. 3-22.

Bustin S., Huggett J. qPCR primer design revisited. Biomolecular detection and quantification, 2017, vol. 14, pp. 19-28.

Sachse K., Frey J. PCR detection of microbial pathogens. Springer Science & Business Media, 2003, 216 pp.

López L. F. et al. Standardization and validation of real time PCR assays for the diagnosis of histoplasmosis using three molecular targets in an animal model. PloS one, 2017, vol. 12, no. 12.

Marino A. M. F. et al. Development and validation of a real-time PCR assay for the detection of Toxoplasma gondii DNA in animal and meat samples. Journal of Veterinary Diagnostic Investigation, 2017, vol. 29, no. 2, pp. 203-207.

SantaLucia Jr J., Hicks D. The thermodynamics of DNA structural motifs. Annual Review of Biophysics and Biomolecular Structure, 2004, vol. 33, pp. 415-440.

SantaLucia J. Physical principles and visual-OMP software for optimal PCR design. PCR primer design, 2007, pp. 3-33.

Scherrer S., Frei D., Wittenbrink M. M. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocida in nasal swabs from swine. Acta Veterinaria Scandinavica, 2016, vol. 58, no. 1, 83 pp.

Forootan A. et al. Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomolecular detection and quantification, 2017, vol. 12, pp. 1-6.

Lichtensteiger C. A., Steenbergen S. M., Lee R. M., Polson D. D., Vimr E. R. Direct PCR analysis for toxigenic Pasteurella multocida. Journal of Clinical Microbiology, 1996, vol. 34, pp. 3035–3039.

Nagai, S., Someno, S., Yagihashi, T. Differentiation of toxigenic from nontoxigenic isolates of Pasteurella multocida by PCR. Journal of Clinical Microbiology, 1994, vol. 32, pp. 1004–1010.

Scherrer S., Frei D., Wittenbrink M. M. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocida in nasal swabs from swine. Acta Veterinaria Scandinavica, 2016, vol. 58, no. 1, pp. 83.

Gautam R. et al. Specific identification of Pasteurella multocida serogroup-A isolates by PCR assay. Research in veterinary science, 2004, vol. 76, no. 3, pp. 179-185.

Kasten R. W., Carpenter T. E., Snipes K. P., Hirsh D. C. Detection of Pasteurella multocida-specific DNA in turkey flocks by use of the polymerase chain reaction. Avian Diseases, 1997, vol. 41, pp. 676–682.

Vougidou C. et al. Distribution of the ompA-types among ruminant and swine pneumonic strains of Pasteurella multocida exhibiting various cap-locus and toxA patterns. Microbiological research, 2015, vol. 174, pp. 1-8.

Djordjevic S. P. et al. Demonstration that Australian Pasteurella multocida isolates from sporadic outbreaks of porcine pneumonia are non-toxigenic (toxA-) and display heterogeneous DNA restriction endonuclease profiles compared with toxigenic isolates from herds with progressive atrophic rhinitis. Journal of medical microbiology, 1998, vol. 47, no. 8, pp. 679-688.

Townsend K. M., Frost, A. J., Lee, C. W., Papadimitriou J. M., Dawkins H. J. Development of PCR assays for species- and type-specific identification of Pasteurella multocida isolates. Journal of Clinical Microbiology, 1998, vol. 36, pp. 1096-1100.

Petersen A., Bisgaard M., Townsend K., Christensen H. MLST typing of Pasteurella multocida associated withhaemorrhagic septicaemia and development of a real-time PCR specific for haemorrhagic septicaemia associatedisolates. Veterinary Microbiology, 2014, vol. 170, pp. 335-341.

Catry B., Baele M., Opsomer G., De Kruif A., Decostere A., Haesebrouck F. tRNA-intergenic spacer PCR for the identification of Pasteurella and Mannheimia spp. Veterinary Microbiology, 2004, vol. 98, pp. 251–260.

Miflin J. K., Blackall P. J. Development of a 23S rRNA-based PCR assay for the identification of Pasteurella multocida. Letters in Applied Microbiology, 2001, vol. 33, pp. 216–221.

Deressa A, Asfaw Y, Lubke B, Kyule M. W, Tefera G, Zessin K. H. Molecular detection of Pasteurella multocida and Mannheimiahaemolytica in sheep respiratory infections in Ethiopia. The International Journal of Applied Research in Veterinary Medicine, 2010, vol. 8, no 2, 101 p.