3D-BIOPRINTING OF BONE TISSUE IN VITRO И IN SITU

Main Article Content

Authors

D. Sultanova

Department of Chemical Engineering and Materials Technology, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, Kazakhstan, 010000

A. Batpen

National Scientific Center of Traumatology and Orthopedics named after Academician N. Batpenov, Ablai Khan Ave. 15a, 010000

D. Saginova

National Scientific Center of Traumatology and Orthopedics named after Academician N. Batpenov, Ablai Khan Ave. 15a, 010000

D. Akilbekova

Department of Chemical Engineering and Materials Technology, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana, Kazakhstan, 010000

Abstract

Advanced techniques in bone tissue regeneration include innovative achievements in the field of tissue engineering, among which 3D bioprinting technology holds a special place. This method demonstrates significant progress, driven by its numerous advantages, confirmed through extensive scientific research. 3D bioprinting offers the capability of precise printing of bone transplants with specified geometry, incorporating necessary biomaterials such as cells and growth factors, which facilitates effective osteoinduction, osteoconduction, and vascularization.

This review article analyzes various modern methods of bone tissue restoration, including the use of autotransplants, allotransplants, and synthetic bone transplants. Particular attention is paid to the latest innovations in 3D bioprinting, opening prospects for creating individualized bone tissues characterized by a high degree of biocompatibility and minimizing the need for invasive procedures.

Additionally, the article presents the concept of in situ bioprinting, developed by Weiss and his colleagues in 2007, as a method of direct printing of bio-inks directly in the area of damage in a living organism. This progressive approach provides high precision in the restoration of tissue defects, regardless of their complexity and geometric features.

Over the last decade, several successful clinical cases of using printed structures have been registered, demonstrating the significance of 3D bioprinting in treating life-threatening diseases, as well as in accelerating the regeneration process and creating tissue transplants for subsequent implantation.

Keywords

3D-bioprinting, transplants, bone tissue, in vitro, in situ, bioink, tissue engineering

Article Details

References

Ashammakhi N., Hasan A., Kaarela O., Byambaa B., Sheikhi A., Gaharwar A. K., Khademhosseini A. Advancing Frontiers in Bone Bioprinting // Advanced Healthcare Materials. 2019. № 7 (8). P. 1801048.

Bella C. Di, Duchi S., O’Connell C. D., Blanchard R., Augustine C., Yue Z., Thompson F., Richards C., Beirne S., Onofrillo C., Bauquier S. H., Ryan S. D., Pivonka P., Wallace G. G., Choong P. F. In situ handheld three‐dimensional bioprinting for cartilage regeneration // Journal of Tissue Engineering and Regenerative Medicine. 2018. № 3 (12). P. 611–621.

Byambaa B., Annabi N., Yue K., Trujillo-de Santiago G., Alvarez M. M., Jia W., Kazemzadeh-Narbat M., Shin S. R., Tamayol A., Khademhosseini A. Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue // Advanced Healthcare Materials. 2017. № 16 (6). P. 1–15.

Campbell P. G., Weiss L. E. Tissue engineering with the aid of inkjet printers // Crossref. 2007. № 8 (7). P. 1123–1127.

Chua C. K., Yeong W. Y. Bioprinting: Principles and applications // Bioprinting: Principles and Applications. 2015. P. 1–269.

Cipitria A., Lange C., Schell H., Wagermaier W., Reichert J. C., Hutmacher D. W., Fratzl P., Duda G. N. Porous scaffold architecture guides tissue formation // Journal of Bone and Mineral Research. 2012. № 6 (27). P. 1275–1288.

Cohen D. L., Lipton J. I., Bonassar L. J., Lipson H. Additive manufacturing for in situ repair of osteochondral defects // Biofabrication. 2010. № 3 (2). P. 035004.

Cui H., Zhu W., Nowicki M., Zhou X., Khademhosseini A., Zhang L. G. Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design // Advanced Healthcare Materials. 2016. № 17 (5). P. 2174–2181.

Fortunato G. M., Rossi G., Bonatti A. F., Acutis A. De, Mendoza-Buenrostro C., Vozzi G., Maria C. De Robotic platform and path planning algorithm for in situ bioprinting // Bioprinting. 2021. (22). P. e00139.

Guerra E., Lara J. de, Malizia A., Díaz P. Supporting user-oriented analysis for multi-view domain-specific visual languages // Information and Software Technology. 2009. № 4 (51). P. 769–784.

Hakimi N., Cheng R., Leng L., Sotoudehfar M., Ba P. Q., Bakhtyar N., Amini-Nik S., Jeschke M. G., Günther A. Handheld skin printer: in situ formation of planar biomaterials and tissues // Lab on a Chip. 2018. № 10 (18). P. 1440–1451.

Hölzl K., Lin S., Tytgat L., Vlierberghe S. Van, Gu L., Ovsianikov A. Bioink properties before, during and after 3D bioprinting // Biofabrication. 2016. № 3 (8). P. 032002.

HULL C. W. Apparatus for production of three dimensional objects by stereolithography - Patent US-6027324-A - PubChem // 1984.

Keriquel V., Guillemot F., Arnault I., Guillotin B., Miraux S., Amédée J., Fricain J.-C., Catros S. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice // Biofabrication. 2010. № 1 (2). P. 014101.

Keriquel V., Oliveira H., Rémy M., Ziane S., Delmond S., Rousseau B., Rey S., Catros S., Amédée J., Guillemot F., Fricain J.-C. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications // Scientific Reports. 2017. № 1 (7). P. 1778.

Li L., Yu F., Shi J., Shen S., Teng H., Yang J., Wang X., Jiang Q. In situ repair of bone and cartilage defects using 3D scanning and 3D printing // Scientific Reports. 2017. № 1 (7). P. 9416.

Li L., Shi J., Ma K., Jin J., Wang P., Liang H., Cao Y., Wang X., Jiang Q. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects // Journal of Advanced Research. 2021. (30). P. 75–84.

Matassi F., Nistri L., Chicon Paez D., Innocenti M. New biomaterials for bone regeneration. // Clinical cases in mineral and bone metabolism : the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases. 2011. № 1 (8). P. 21–4.

Mironov V., Visconti R. P., Kasyanov V., Forgacs G., Drake C. J., Markwald R. R. Organ printing: Tissue spheroids as building blocks // Biomaterials. 2009. № 12 (30). P. 2164–2174.

Murphy S. V, Atala A. 3D bioprinting of tissues and organs. // Nature biotechnology. 2014. № 8 (32). P. 773–785.

Norotte C., Marga F. S., Niklason L. E., Forgacs G. Scaffold-free vascular tissue engineering using bioprinting // Biomaterials. 2009. № 30 (30). P. 5910–5917.

O’Connell C. D., Bella C. Di, Thompson F., Augustine C., Beirne S., Cornock R., Richards C. J., Chung J., Gambhir S., Yue Z., Bourke J., Zhang B., Taylor A., Quigley A., Kapsa R., Choong P., Wallace G. G. Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site // Biofabrication. 2016. № 1 (8). P. 015019.

Organ Procurement and Transplantation Network. URL: URL (дата обращения: 16.02.2023). Data | OPTN // Organ Procurement and Transplantation Network [Электронный ресурс]. URL: URL.

Ozbolat I. T. Bioprinting scale-up tissue and organ constructs for transplantation. // Trends in biotechnology. 2015. P. 1–6.

Pepla E., Besharat L. K., Palaia G., Tenore G., Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. // Annali di stomatologia. 2014. № 3 (5). P. 108–14.

Pereira R. F., Bártolo P. J. 3D bioprinting of photocrosslinkable hydrogel constructs // Journal of Applied Polymer Science. 2015. № 48 (132).

Piard C., Baker H., Kamalitdinov T., Fisher J. Bioprinted osteon-like scaffolds enhance in vivo neovascularization // Biofabrication. 2019. № 2 (11). P. 025013.

Singh S., Choudhury D., Yu F., Mironov V., Naing M. W. In situ bioprinting – Bioprinting from benchside to bedside? // Acta Biomaterialia. 2020. (101). P. 14–25.

Temple J. P., Hutton D. L., Hung B. P., Huri P. Y., Cook C. A., Kondragunta R., Jia X., Grayson W. L. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds // Journal of Biomedical Materials Research - Part A. 2014. № 12 (102). P. 4317–4325.

Weinberg C. B., Bell E. A Blood Vessel Model Constructed from Collagen and Cultured Vascular Cells // Science. 1986. № 4736 (231). P. 397–400.

Zhou J., Dong J. Vascularization in the Bone Repair InTech, 2012.

Summary Global report 2018 - GODT. URL: URL (дата обращения: 16.02.2023). [Электронный ресурс]. URL: URL.