SUPPRESSOR CELLS (MDSC) REGULATE THE T-CELL RESPONSE IN OLD MICE IMMUNIZED WITH THE WHOLE-VIRION SARS-CoV-2 VACCINE
Main Article Content
Authors
R. Tleulieva
M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immunosuppressive population involved in pathological processes associated with chronic inflammation. In recent years, the role of these cells in the regulation of a number of non-pathological processes, in particular, in the development of vaccine-induced immune response, has been actively discussed. This work was aimed at investigating the role of MDSC in the development of an immune response in old mice immunized with an inactivated whole virion SARS-CoV-2. Immunization of old animals induced an increase in the relative content of B cells and the production of specific antibodies to S1 and N proteins of SARS-CoV-2 in titers comparable to those of young animals. At the same time, elevated MDSC levels in aged animals negatively correlated with the level of CD8+ T cells. Splenic MDSCs in old animals were characterized by increased production of reactive oxygen species compared to young animals. In vitro experiments showed that MDSC depletion increased antigen-specific production of IFNγ by CD4+ T cells. The data obtained suggest a negative role for MDSC in regulating the T-cell vaccine-induced response to inactivated SARS-CoV-2 and encourage further studies in this direction, which may be a key to developing approaches to increase the efficacy of vaccines against SARS-CoV-2 in at-risk groups.
Keywords
myeloid suppressor cells, aging, vaccination, SARS-CoV-2, immune response, mouse cells
Article Details
References
Bradley S., Bender M.D. Infectious disease risk in the elderly // Immunol. Allergy Clin. N. Am. - 2003. - Vol.23. - P.57–64. doi: 10.1016/s0889-8561(02)00078-4.
Fulop T., Larbi A., Witkowski J. M. et al. Immunosenescence and cancer // Crit. Rev. Oncog. - 2013. - Vol. 18. - P. 489–513. doi: 10.1615/CritRevOncog.2013010597.
Yoshikawa T.T. Epidemiology and unique aspects of aging and infectious diseases // Clin. Infect. Dis. - 2000. - Vol. 30(6). - P. 931–933. doi:10.1086/313792.
Goronzy J. J., Weyand C. M. Understanding immunosenescence to improve responses to vaccines // Nat. Immunol. - 2013. - Vol.14. - P. 428–436. doi: 10.1038/ni.2588.
Osterholm MT, Kelley NS, Sommer A, Belongia EA. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis // Lancet Infect Dis. - 2012. - Vol. 12(1). - P. 36-44. doi: 10.1016/S1473-3099(11)70295-X. Epub 2011 Oct 25. Erratum in: Lancet Infect Dis. 2012 Sep;12(9):655. PMID: 22032844.
Berild JD, Winje BA, Vestrheim DF, Slotved H-C, Valentiner-Branth P, Roth A, Storsäter J. A Systematic Review of Studies Published between 2016 and 2019 on the Effectiveness and Efficacy of Pneumococcal Vaccination on Pneumonia and Invasive Pneumococcal Disease in an Elderly Population // Pathogens. - 2020. - Vol. 9(4). - P. 259. Crossref.
Salminen, Antero et al. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process // Ageing Research. Reviews. – 2018. – N. 48. – P. 1-10.
Budhwar S., Verma P., Verma R. et al. The yin and yang of myeloid-derived suppressor cells // Front. Immunol. - 2018. - Vol. 28. 2776. doi: 10.3389/fimmu.2018.02776. eCollection 2018.
Schroeter A, Roesel MJ, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Aging Affects the Role of Myeloid-Derived Suppressor Cells in Alloimmunity // Front Immunol. - 2022. - Vol. 13. - P. 917972. doi: 10.3389/fimmu.2022.917972.
Onyilagha C., Kuriakose S., Ikeogu N. et al. Myeloid-derived suppressor cells contribute to susceptibility to Trypanosoma congolense infection by suppressing CD4+ T cell proliferation and IFNγ production // J. Immunol. - 2018. - Vol. 201(2). - P. 507–515. doi: 10.4049/jimmunol.1800180.
Heithoff D.M., Enioutina E.Y., Bareyan D. et al. Conditions that diminish myeloid-derived suppressor cell activities stimulate cross-protective immunity // Infect. Immun. - 2008. - Vol. 76(11). -P. 5191–5199. doi: 10.1128/IAI.00759-08.
Chen S., Akbar S.M., Miyake T. et al. Diminished immune response to vaccinations in obesity: role of myeloid-derived suppressor and other myeloid cells // Obes. Res. Clin. Pract. - 2015. - Vol. 9(1). - P. 35–44. doi: 10.1016/j.orcp.2013.12.006.
Vaccari M, Fourati S, Brown DR, Silva de Castro I, Bissa M, Schifanella L, Doster MN, Foulds KE, Roederer M, Koup RA, Sui Y, Berzofsky JA, Sekaly RP, Franchini G. Myeloid Cell Crosstalk Regulates the Efficacy of the DNA/ALVAC/gp120 HIV Vaccine Candidate // Front Immunol. - 2019. - Vol. 10. - P. 1072. doi: 10.3389/fimmu.2019.01072
Lin A., Liang F., Thompson E.A. et al. Rhesus macaque myeloid-derived suppressor cells demonstrate T cell inhibitory functions and are transiently increased after vaccination // J. Immunol. - 2018. - Vol. 200(1). - P. 286–294. doi: 10.4049/jimmunol.1701005.
IACUC Policy on the Retro-orbital Bleeding of Rodents. John Hopkins University. Available online: URL (accessed: 09.01.2023).
Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species // J Immunol. - 2004. - Vol. 172. - P. 989–999.
Ohl K, Tenbrock K. Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression // Front Immunol. - 2018. - Vol. 9. - P. 2499. doi:10.3389/fimmu.2018.02499
Flores, R. R., Clauson, C. L., Cho, J., Lee, B. C., McGowan, S. J., Baker, D. J., Niedernhofer, L. J., & Robbins, P. D. (2017). Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism // Aging cell. - 2017. - Vol. 16(3). - P. 480–487. doi.org/10.1111/acel.12571.
Springer T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm // Cell. – 1994. – Vol.76. – P.301-314. doi: 10.1016/0092-8674(94)90337-9.
Hanson EM, Clements VK, Sinha P, Ilkovitch D, Ostrand-Rosenberg S. Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells // J Immunol. - 2009. - Vol. 183(2). - P.937-44. doi: 10.4049/jimmunol.0804253.