BORRELIOSIS: A HIDDEN THREAT FOR KAZAKHSTAN
Main Article Content
Authors
A.O. Bissenbay
National Center for Biotechnology, Almaty Branch, 14, Zhahanger str., Almaty, 050054, Kazakhstan
A.V. Zhigailov
National Center for Biotechnology, Almaty Branch, 14, Zhahanger str., Almaty, 050054, Kazakhstan
E.R. Maltseva
National Center for Biotechnology, Almaty Branch, 14, Zhahanger str., Almaty, 050054, Kazakhstan
R.A. Egemberdieva
National Center for Biotechnology, Almaty Branch, 14, Zhahanger str., Almaty, 050054, Kazakhstan
Y.A. Skiba
National Center for Biotechnology, Almaty Branch, 14, Zhahanger str., Almaty, 050054, Kazakhstan
S.M. Mamadaliyev
National Center for Biotechnology, Almaty Branch, 14, Zhahanger str., Almaty, 050054, Kazakhstan
Abstract
Tick-borne borreliosis, commonly known as Lyme disease or Lyme borreliosis, is a natural focal zoonotic transmissive disease caused by the Borreliella burgdorferi sensu lato complex. If left untreated, the disease can cause damage to the nervous system, joints, or skin, as well as lead to development of chronic atrophic diseases. Diagnosis of borreliosis remains a challenge owing to variations in clinical symptoms and manifestations, simultaneous damage to several organs, and frequent latent persistence of the pathogen in the body, leading to misdiagnosis or late diagnosis. This situation results in defects or delays in the provision of medical care with a high frequency of residual consequences, resulting in temporary disability for the patient that imposes a significant social-economic burden. Ticks of the genus Ixodes are the main carrier of the disease, which inhabit the mountain regions of eastern and southeastern Kazakhstan. However, the distribution area of these ticks has been expanding in recent years owing to the effects of climate change, resulting in an increase of natural foci of tick-borne borreliosis. We here provide updated data on the epidemiology, etiology, pathogenesis, and diagnostic methods for Lyme borreliosis, along with an overview of modern molecular methods for the analysis of borrelia. Moreover, we offer an overall assessment of the risks associated with this disease for Kazakhstan.
Keywords
Lyme disease, Borreliella burgdorferi sensu lato, Ixodes, erythema, genotyping, genospecies
Article Details
References
Solovej N.V., Shherba V.V., Anis'ko L.A., Gorbich Ju.L., Danilov D.E., Karpov I.A. Lajm-borrelioz [Lyme Borreliosis]. Minsk, BSMU Publishing House. 2015. - 31 p.
Setubal J.C., Reis M., Matsunaga J., Haake D.A. Lipoprotein computational prediction in spirochaetal genomes. Microbiology, 2006, vol.152, pp. 113–121. 16385121. Crossref.
Fraser C.M., Casjens S., Huang W.M., et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature, 1997, vol.390, pp 580–586. 9403685. Crossref.
Adeolu M., Gupta R.S. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek, 2014, vol.105, no.6, pp. 1049–1072. PMID: 24744012. Crossref.
Bergström S., Normark J. Microbiological features distinguishing Lyme disease and relapsing fever spirochetes. Wien. Klin. Woch., 2018, vol. 130, pp. 484–490. 30074091. Crossref.
Ružić-sabljić E., Cerar T. Borrelia Genotyping in Lyme Disease // Open Dermatology J. – 2016. - Vol. 10. – P. 6–14. Crossref.
Stanek G., Wormser G.P., Gray J., Strle F. Lyme borreliosis. Lancet, 2012, vol. 379, pp. 461–473. 21903253. Crossref.
Strle F., Stanek G. Clinical manifestations and diagnosis of Lyme borreliosis. Curr. Probl. Dermatology, 2009, vol. 37, pp. 51–110. 21903253. Crossref.
Van Dam A.P., Kuiper H., Vos K., Widjojokusumo A., et al. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis., 1993, vol.17, pp. 708–717. 7903558. Crossref.
Barbour A.G. Isolation and cultivation of Lyme disease spirochetes. Yale J. Biol. Medicine, 1984, vol. 57, pp. 521–525. 6393604.
Walker D.H., Barbour et al. Emerging bacterial zoonotic and vector-borne diseases: ecological and epidemiological factors. JAMA, 1996, vol. 275, pp. 463–499. 8627968. Crossref.
Gorelova N.B., Korenberga E.I., et al. Small mammals as reservoir hosts for Borrelia in Russia. Zentr. Bakter., 1995, vol. 282, no. 3, pp. 315-322. 7549164. Crossref.
Eugene D., Shapiro M.D. Lyme Disease. New England J. Medicine, 2014, vol. 370, no.18, pp. 1724–1731. Crossref.
Balashov Yu.S. Blood-sucking ticks (Ixodoidea) are carriers of human and animal diseases. - Leningrad: Science, 1967. - 287 p.
Halperin J.J. Lyme disease: an evidence-based approach. Wallingford, CAB International, 2018. 286 pp. Crossref.
Korenberg E.I. Comparative ecology and epidemiology of Lyme disease and tick-borne encephalitis in the former Soviet Union. Parasitology Today, 1994, vol. 10, no.4, pp. 157-160. 15275486. Crossref.
Biadun W., Stȩpień-Rukasz H., Rzymowska J., Niemczyk M. Occurrence of Borrelia burgdorferi sensu lato in Ixodes ricinus and Dermacentor reticulatusticks collected from roe deer and deer shot in the South-East of Poland. Bulletin- Veterinary Institute in Pulawy., 2007, vol. 51, no.2, pp. 213-217.
Karpov I.A., Solovej N.V., Anis'ko L.A., Shherba V.V., Danilov D.E. Lajm-borrelioz: voprosy diagnostiki i racional'noj jetiotropnoj terapii [Lyme borreliosis: issues of diagnosis and rational etiotropic therapy]. Klinicheskaja infektologija i parazitologija, 2015, vol. 3, no. 14, pp. 64–78.
Randolph S.E., Craine N.G. General framework for comparative quantitative studies on transmission of tick-borne diseases using Lyme borreliosis in Europe as an example. J. Med. Entomol., 1995, vol. 32, no.6, pp. 765-777. 8551498. Crossref.
Hanson M.S., Cassatt D.R., Guo B.P., et al. Active and passive immunity against Borrelia burgdorferi decorin binding protein A (DbpA) protects against infection. Infect. Immun., 1998, vol. 66, pp. 2143–2153. 9573101.
Fischer J.R., LeBlanc K.T., Leong J.M. Fibronectinbinding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect Immun., 2006, vol.74, pp. 435–441. 16368999. Crossref.
Goldstein S.F., Charon N.W., Kreiling J.A. Borrelia burgdorferi swims with a planarwaveformsimilar to that of eukaryotic flagella. PNAS USA, 1994, vol.91, pp. 3433–3437. 8159765. Crossref.
Casjens S., Palmer N., et al. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiology, 2000, vol. 35, pp. 490–516. 10672174. Crossref.
Steere A.C., Klitz W., Drouin E.E., et al. Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide. J. Exp. Medicine, 2006, vol. 203, pp. 961–971. 16585267. Crossref.
Baranton G., De Martino S.J. Borrelia burgdorferi sensu lato diversity and its influence on pathogenicity in humans. Curr. Probl. Derm., 2009. vol. 37, pp. 1–17. 19367094. Crossref.
Kraiczy P., Stevenson B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: structure, function and regulation of gene expression. Ticks and Tick Borne Dis., 2013, vol. 4, pp. 26–34. 23219363. Crossref.
Alitalo A., Meri T., Rämö L., Jokiranta T.S., Heikkilä T., Seppälä I.J., Oksi J, Viljanen M., Meri S. Complement evasion by Borrelia burgdorferi: serum-resistant strains promote C3b inactivation. Infect. Immun., 2001, vol. 69, pp. 3685–3691. 11349031. Crossref.
Giambartolomei G.H., Dennis V.A., Philipp M.T. Borrelia burgdorferi stimulates the production of interleukin-10 in peripheral blood mononuclear cells from uninfected humans and rhesus monkeys. Infect. Immun., 1998, vol. 66, no.6, pp. 2691–2697. 9596735.
Schutzer S.E., Coyle P.K., Belman A.L., Golightly M.G., Drulle J. Sequestration of antibody to Borrelia burgdorferi in immune complexes in seronegative Lyme disease. Lancet, 1990, vol. 335, no. 8685, pp. 312–315. 1967770. Crossref.
Zhang J.R., Norris S.J. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental geneconversion. Infect. Immun., 1998, vol. 66, pp. 3698–3704. 9673251.
Zhang J.R., Hardham J.M., Barbour A.G., Norris S.J. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell, 1997, vol. 89, no.2, pp. 275–285. 9673251.
Cabello F.C., Godfrey H.P., Newman S.A. Hidden in plain sight: Borrelia burgdorferi and the extracellular matrix. Trends in Microbiology, 2007, vol. 15, pp. 350–354. 17600717. Crossref.
Alaedini A., Latov N. Antibodies against OspA epitopes of Borrelia burgdorferi cross-react with neural tissue. J Neuroimmunol.. 2005, vol. 159, pp. 192-195. 15652419. Crossref.
Tibbles C.D., Edlow J.A. Does this patient have erythema migrans? JAMA, 2007, vol. 297, pp. 2617–2627. 17579230. Crossref.
Marques А. Lyme Disease: A Review. Curr. Allergy Asthma Rep., 2010, vol. 10, pp. 13–20. 20425509. Crossref.
Marques A. Chronic Lyme Disease: A Review. Infect. Dis. Clin. North Am., 2008, vol.22, no.2, pp. 341–360. 18452806. Crossref.
Qureshi MZ, New D., Zulqarni N.J., Nachman S. Overdiagnosis and overtreatment of Lyme disease in children. Pediatr. Infect. Dis. J., 2002, vol.21, no.1, pp. 12–14. 11791091. Crossref.
Swanson J.S., Neitzel D., Reed K.D., Belongia E.A. Coinfections acquired from Ixodes ticks. Clinical Microbiol. Revew., 2006, vol. 19, pp. 708–727. 17041141. Crossref.
Lee S.H., Vigliotti V.S., Vigliotti J.S., Jones W., Pappu S. Increased sensitivity and specificity of Borrelia burgdorferi 16S ribosomal DNA detection. Am. J, Clin, Pathol., 2010, vol. 133, no. 4, pp. 569-576. 20231610. Crossref.
Neubert U., Schaller M., Januschke E., Stolz W., Schmieger H. Bacteriophages induced by ciprofloxacin in a Borrelia burgdorferi skin isolate. Zentr. Bakter., 1993, vol. 279, no. 3, pp. 307-315. 8219501.
Hanson M.S., Cassatt D.R., et al., Dorward D.W., Höök M. Active and passive immunity against Borrelia burgdorferi decorin binding proteinA (DbpA) protects against infection. Infect Immun., 1998, vol. 66, pp. 2143–2145. 9573101.
Bergström S., Normark J. Microbiological features distinguishing Lyme disease and relapsing fever spirochetes. Wien Klin. Woch., 2018, vol. 130, pp. 484–490. 30074091. Crossref.
Lin T., Oliver J.H., et al. Genetic heterogeneity of Borrelia burgdorferi sensu lato in the southern United States based on restriction fragment length polymorphism and sequence analysis. J. Clin. Microbiol., 2001, vol. 39, pp. 2500–2507. 11427560. Crossref.
Liveris D., Gazumyan A., Schwartz I. Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J. Clin. Microbiol., 1995, vol. 33, pp. 589–595. 7751362.
Casjens Sh.R., Gilcrease E.B., et al. Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics, 2017, vol. 18, no.1. 165. 28201991. Crossref.
Derdáková M., Lencáková D. Association of genetic variability within the Borrelia burgdorferi sensu lato with the ecology, epidemiology of Lyme borreliosis in Europe. Ann Agric Environ Med., 2005, vol.12, no.2, pp. 165-172. 16457468.
Egemberdieva R.A., Ermuhanova N.T., Dmitrovskij A.M. Jepidemiologicheskaja harakteristika nekotoryh kleshhevyh transmissivnyh infekcij v Kazahstane [Epidemiological characteristics of some tick-borne vector-borne infections in Kazakhstan]. Nacional'nye prioritety Rossii, 2013, vol. 2, no. 9, p. 92-94.
Kurmangalieva K.B., Atygaeva S.K., ZhAmburchinova A.N., Shirshikbaeva G.E. Sluchaj bolezni Lajma v nejendemichnom regione [A case of Lyme disease in a non-endemic region]. Zhurnal infektologii, 2014, vol. 4, no.1, p. 93-94.
Kovaleva S.Y., Fedorovab S.Zh., et al. Molecular features of Ixodes kazakstani: first results. Ticks and Tick-borne Diseases, 2018, vol. 9, no. 3, pp. 759-761. 29519771. Crossref.
Filippova N.A. Iksodovye kleshhi podsemejstva Ixodonae. Fauna SSSR, tom IV- Paukoobraznye [Fauna USSR. Spiders. Ixodid ticks (Ixodinae)]. Leningrad, Nauka, 1977, vol.4, ser.4. - 316 p.