Prospects for The Use of Thermotolerant Microorganisms for Remediation of Oil-Contaminated Soils

Main Article Content

Authors

S.A. Aitkeldiyeva

Research and Production Center for Microbiology and Virology, 105, Bogenbai batyr str., Almaty, 050010, Kazakhstan

E.R. Faizulina

Research and Production Center for Microbiology and Virology, 105, Bogenbai batyr str., Almaty, 050010, Kazakhstan

L.G. Tatarkina

Research and Production Center for Microbiology and Virology, 105, Bogenbai batyr str., Almaty, 050010, Kazakhstan

A.V. Alimbetova

Research and Production Center for Microbiology and Virology, 105, Bogenbai batyr str., Almaty, 050010, Kazakhstan

O.N. Auezova

Research and Production Center for Microbiology and Virology, 105, Bogenbai batyr str., Almaty, 050010, Kazakhstan

G.A. Spankulova

Research and Production Center for Microbiology and Virology, 105, Bogenbai batyr str., Almaty, 050010, Kazakhstan

Abstract

Most of the world's oil fields are concentrated in geographic areas with high temperature conditions. One of the main problems of remediation of territories in hot climates is the fact that high temperatures reduce the viscosity of oil and, thus, accelerate its diffusion into the soil. This greatly complicates the processes of soil cover restoration using conventional methods. An alternative can be bioremediation using the oil-oxidizing microorganisms that are resistant to high temperatures and low humidity. The presented review is devoted to the analysis of studies of thermotolerant microorganisms by scientists from different countries with the aim of using them in the remediation of contaminated soils from oil and oil products. The data on the influence of the main environmental factors, such as temperature, oxygen, pH, salinity, aeration, the presence of nutrients, etc., on the viability and vital activity of thermotolerant hydrocarbon-oxidizing microorganisms are presented. Examples of biochemical and molecular genetic characteristics of thermotolerant microorganisms are given. Their taxonomic diversity is shown, and examples of the degradation of individual oil components by active strains are given.

Keywords

thermotolerant microorganism, bioremediation, oil, oil destructor, temperature

Article Details

References

Karlapudi A.P., Venkateswarulu T.C., Tammineedi J., Kanumuri L., Bharath K.R., Dirisala V.R., Kodali V.P. Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum, 2018, vol. 4, no 3, pp. 241-249. Crossref

Vik E.A., Bardos P. Remediation of Contaminated Land Technology Implementation in Europe: A Report from the Contaminated Land Rehabilitation Network for Environmental Technologies (CLARINET). Umweltbundesamt/Federal Environment Agency, Austria, 2002. 180 p.

URL

Veerasingam S., Vethamony P., Mani Murali R., Babu, M.T. Sources, Vertical Fluxes and Accumulation of Petroleum Hydrocarbons in Sediments from the Mandovi Estuary, West Coast of India. Int. J. Environ. Res., 2015, vol. 9, no 1, pp. 179-186. Crossref

Anastasios I. Zouboulis, Panagiotis A. Moussas, Savvina G. Psaltou Groundwater and Soil Pollution: Bioremediation. In book: Reference Module in Earth Systems and Environmental Sciences, 2018, pp. 1037-1044. Crossref.

Sunita J. Varjani Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 2017, vol. 223, pp. 277-286. Crossref

Borah Debajit, Yadav R.N.S. Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain. Egyptian Journal of Petroleum, 2017, vol. 26, pp. 181-188. Crossref

Zhukov D.V., Murygina V.P., Kalyuzhny S.V. Kineticheskiye zakonomernosti biodegradatsii alifaticheskikh uglevodorodov bakteriyami Rhodococcus ruber i Rhodococcus erythropolis [Kinetic patterns of biodegradation of aliphatic hydrocarbons by the bacteria Rhodococcus ruber and Rhodococcus erythropolis]. Prikladnaya biokhimiya i mikrobiologiya - Applied Biochemistry and Microbiology, 2007, vol. 43, no 6, pp.657-663.

Adnan B. Al-Hawash, Maytham A. Dragh, Shue Li, Ahmad Alhujaily Hayder A .Abbood, Xiaoyu Zhang Fuying M. Principles of microbial degradation of petroleum hydrocarbons in the environment. The Egyptian Journal of Aquatic Research, 2018, vol. 44, no 2, pp. 71-76. Crossref

Chernyavskaya M.I., Sidorenko A.V., Golenchenko S.G., Lysak V.V., Samsonova A.S. Ekologicheskaya mikrobiologiya. Uchebno metodicheskoye posobiye [Ecological microbiology. Educational-methodical manual]. Minsk, BSU, 2016. 60 p.

Bisht, P. P., Bhargava B., Sharma S., Kumar V., Sharma K.D. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol, 2015, vol. 46, no 1, pp. 7-21. Crossref

Aislabie J., Saul D., Foght J. Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles, 2006, vol. 10, pp. 171-179. Crossref

Okoh A.I. Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants Biotechnol. Mol. Biol. Rev., 2006, vol. 1, no 2, pp. 38-50. URL

Thamer M., Al-Kubaisi A.R., Zahraw Z., Abdullah H. A., Hindy I., Khadium A. A. Biodegradation of Kirkuk light crude oil by Bacillus thuringiensis. Northern of Iraq Nat. Sci., 2013, vol. 5, no 7, pp. 865-873. Crossref

Haritash A., Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater., 2009, vol. 169, no 1–3, pp. 1-15. Crossref

McNally D.L., Mihelcic J.R., Lueking D.R. Biodegradation of three-and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ. Sci. Technol., 1998, vol. 32, no. 17, pp. 2633-2639. Crossref

Meng L., Li H., Bao M., Sun P. Metabolic pathway for a new strain Pseudomonas synxantha LSH-7: from chemotaxis to up take of n-hexadecane. Sci. Rep., 2017, vol. 7, pp. 390-398. Crossref.

Meckenstock R.U., Boll M., Mouttaki H., Koelschbach J.S., Tarouco P.C., Weyrauch P., Dong X., Himmelberg A.M. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. Biotechnol., 2016, vol. 26, pp. 92-118. Crossref

Wilkes H., Buckel W., Golding B.T., Rabus R. Metabolism of hydrocarbons in n-Alkane utilizing anaerobic bacteria. J. Mol. Microbiol. Biotechnol., 2016, vol. 26, pp. 138-151. Crossref

Abbasian F., Lockington R., Mallavarapu M., Naidu R. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Appl. Biochem. Biotechnol., 2015, vol. 176, no 3, pp. 670-699. Crossref / s12010-015-1603-5

Heider J., Spormann A.M., Beller H.R., Widdel F. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev., 1999, vol. 22, pp. 459-473. Crossref

Foght J.M. Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J. Mol. Micobiol. Biotechnol., 2008, vol. 15, pp. 93-120. Crossref

Abed R.M.M., Al-Thukair A., de Beer D. Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol., 2006, vol. 57, pp. 290–301. Crossref

Kleikemper J., Schroth M.H., Sigler W.V., Schmucki M., Bernasconi S.M., Zeyer J. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl Environ Microbiol., 2002, vol. 68, pp. 1516–1523. Crossref

Qin X., Tang J., Li D., Zhang Q. Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline alkaline soil. Lett. Appl. Microbiol., 2012, vol. 55, no 3, pp. 210-217. Crossref

Ebadi A., Khoshkholgh Sima N.A., Olamaee M., Hashemi M., Ghorbani N. R. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. J. Adv. Res., 2017, vol. 8, no 6, pp. 627-633. Crossref

Ben Ali Gam Z., Abdelkafi S., Casalot L., Tholozan J. L., Oueslati R. and Labat M. Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. International Journal of Systematic and Evolutionary Microbiology, 2007, vol. 57, pp. 2307–2313. Crossref Crossref

WangY.N., ChiC.Q., CaiM., LouZ.Y., TangY.Q., ZhiX.Y. et al. Amycolicicoccus sub. flavus gen. nov., sp. nov., an actinomycete isolated from a saline soil contaminated by crude oil. Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 638-643. Crossref

Bonomo R., Cennamo G., Purrello R., Santoro A., Zappala R. Comparison of three fungall accases from Rigidoporuslignosus and Pleurotusostreatus: correlation between conformation changes and catalytic activity. J. Inorg. Biochem., 2001, vol. 83, no 1, pp. 67-75. Crossref

Bossert I., Bartha R. The fate of petroleum in soil ecosystems. In: R.M. Atlas (Ed.) Petroleum Microbiology, Macmillan, New York, 1984, pp. 435-473.

Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I.M. Effect of salinity, temperature, pH and crude oil concentration on biodegradation of crude oil by Pseudomonas aeruginosa. J. Biol. Environ. Sci., 2007, vol. 1, no 2, pp. 51-57.

Pawar R. The effect of soil pH on bioremediation of polycyclic aromatic hydrocarbons (PAHS). J. Bioremediat. Biodegrad., 2015, vol. 6, no 3, pp. 1-14. Crossref

Varjani S.J., Rana D.P., Jain A.K., Bateja S., Upasani V.N. Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int. Biodeterior. Biodegrad., 2015, vol. 103, pp. 116-124. Crossref

Varjani S.J., Upasani V.N. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour. Technol., 2016, vol. 222, pp. 195-201. Crossref

Semple K.T., Morriss A., Paton G.I. Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur. J. Soil. Sci., 2003, vol. 54, no 4, pp. 809-818. Crossref

Iqbal J. Effect of temperature on efficiency of insitu bioremediation technology: A laboratory microcosmand field study. PhD Thesis. Louisiana State University and Agricultural and Mechanical College, 2003.

Fiedler L., Gilbert E. Introduction to in situ bioremediation of groundwater. United States Environmental Protection Agency, 2013. URL

Delegan Ya.A., Vetrova A.A., Chernyavskaya M.I., Titok M.A., Filonov A. E. Termotolerantnyye aktinomitsety kak agenty remediatsii neftezagryaznennykh gruntov i vod v usloviyakh zharkogo aridnogo klimata [Thermo-tolerant actinomycetes as agents of remediation of oil-contaminated soils and waters in hot arid climate]. Izvestiya Tul'skogo gosudarstvennogo universiteta Yestestvennyye nauki - Bulletin of the Tula State University of Natural Sciences, 2015, vol. 4, pp. 248–258.

Harmesh S., Ajar N. Y., Atul K. S., Surendra S., Rajeev K., Anil K. S. Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech., 2017, vol. 7, no 2, pp. 118. Crossref / s13205-017-0762-1

David M.C., Fatma M. M., Maurice B., Marc S., Beauregard M. Identification of Thermophilic Bacterial Strains Producing Thermotolerant Hydrolytic Enzymes from Manure Compost. Indian J Microbiol. Mar, 2012, vol. 52, no 1, pp. 41-47. Crossref

Lee S.K., Lee S.B. Isolation and characterization of a thermotolerant bacterium Ralstonia sp. strain PHS1 that degrades benzene, toluene, ethyl benzene, ando-xylene. Appl Microbiol Biotechnol., 2001 vol. 56, no 1-2, pp. 270-275. Crossref

Dastgheib С.М., Tirandaz H., Moshtaghi N. M., Ramezani M., Shavandi M., Amoozegar M.A., Ventosa A. Prauserella oleivorans sp. nov., a halophilic and thermotolerant crude-oil-degrading actinobacterium isolated from an oil-contaminated mud pit. Int. J. Syst. Evol. Microbiol., 2017, vol. 67, no 9, pp. 3381-3386. Crossref

Raza C., Bila lA., Jahan N. Evaluation of biodegradation potential of bacteria in crude oil contaminated soil. Biologia (Pakistan), 2010, vol. 56, no 1-2, pp. 77-85.

Mnif S., Chamkha M., Labat M., Sayadi S. Simultaneous hydrocarbon biodegradation and biosurfactant production by oil field-selected bacteria. J. Appl. Microbiol., 2011, vol. 111, pp. 525-536. Crossref

Rajaei S., Seyedi S.M., Raiesi F., Shiran B., Raheb J. Characterization and Potentials of Indigenous Oil-Degrading Bacteria Inhabiting the Rhizosphere of Wild Oat (Avena Fatua L.) in South West of Iran. Iran J Biotech., 2013, vol. 11, no 1, pp. 32-40. Crossref / IJB.9334

Delegan Y.A. Termotolerantnyye bakterii-destruktory uglevodorodov nefti [Thermo-tolerant bacteria-decomposers of oil hydrocarbons]: Diss. Cand. biol. Sciences: 03.01.06 – Pushchino, 2016, 153 p.

Obuekwe C.O., Badrudeen A.M., Al-Saleh E., Mulder J.L. Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress. Intern. Biodeter. Biodegrad., 2005, vol. 56, pp. 197–205 Crossref

Teerapatsakul C., Pothiratana C., Chitradon L., Thachepan S. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametespolyzona RYNF13. J Gen. Appl. Microbiol., 2017, vol. 62, no 6, pp. 303-312. Crossref

Tsaprailis H. Properties of dilbit and conventional crude oils. Alberta Innovates Energy and Environmental Solutions, Report 66030, 2013. URL.

URL

URL

Abed R.M.M., Al-Sabahi J., Al-Maqrashi F., Al-Habsi A., Al-Hinai M. Characterization of hydrocarbon-degrading bacteria isolated from oil-contaminated sediments in the Sultanate of Oman an devaluation of bioaugmentation and biostimulation approaches in microcosm experiments. International Biodeterioration & Biodegradation, 2014, vol. 89, pp. 58-66. Crossref

Aitkeldiyeva S.A., Faizulina E.R., Auezova O.N., Tatarkina L.G., Spankulova G.A. Isolation and study of thermotolerant oil-oxidizing microorganisms. News of the NAS RK. Series of Biology and Medicine, 2019, vol. 2, pp. 56-62. Crossref

Aitkeldieva S.A., Fayzulina E.R., Auezova O.N., Tatarkina L.G., Spankulova G..A. Selection and study of thermotolerant cultures of oil-oxidizing microorganisms. Mikrobiologiya i virusologiya - Microbiology and virology, 2018, vol. 3, pp. 40-50.