Main Article Content


A. Kabylbayeva

School of Science and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan, Kazakhstan

K. Zharylgassynova

School of Science and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan, Kazakhstan;

A. Abilova

1 School of Science and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur-Sultan, Kazakhstan;

M. Amanzholova

L.N. Gumilyov Eurasian National University, 13, Kazhymukan street, Nur-Sultan, Kazakhstan
National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kazakhstan

S. Abeldenov

National Center for Biotechnology, 13/5, Korgalzhyn road, Nur-Sultan, 010000, Kazakhstan


Access to fast and reliable methods for the detection of nucleic acids is critical in many different fields. Early identification of pathogens based on their genetic information associated with various diseases makes early diagnosis and treatment possible.

The situation with the COVID-19 pandemic has shown that right now there is an urgent need to find enzymes for new diagnostic methods based on modern fundamental knowledge. Methods that allow covering a wider range of applications will be cheaper and do not require specialized premises, qualified personnel and will be simple to implement.

One of these enzymes is the recently discovered endonuclease of the CRISPR/Cas systems - Cas12a. In this review, we provide a description of the Cas12a enzyme and its use in the COVID-19 diagnostics.


CRISPR-Cas12a, COVID-19, diagnostics, SARS-CoV-2, RT-RPA, RT-LAMP

Article Details


Mina M. J., Andersen K. G. COVID-19 testing: One size does not fit all. Science, 2021, vol. 371, no. 6525, pp. 126-127.

He X., Lau E. H. Y., Wu P., Deng X., Wang J., Hao X., Lau Y. C., Wong J. Y., Guan Y., Tan X., Mo X., Chen Y., Liao B., Chen W., Hu F., Zhang Q., Zhong M., Wu Y., Zhao L., Zhang F., Cowling B. J., Li F., Leung G. M. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med., 2020, vol. 26, no. 5, pp. 672-675.

Larremore D. B., Wilder B., Lester E., Shehata S., Burke J. M., Hay J. A., Tambe M., Mina M. J., Parker R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci Adv., 2021, vol. 7, no. 1 :eabd5393. doi: 10.1126/sciadv.abd5393

Pavelka M., Van-Zandvoort K., Abbott S., Sherratt K., Majdan M., Jarčuška P., Krajčí M., Flasche S., Funk S. The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia. Science, 2021, vol. 372, no. 6542, pp. 635-641.

Mina M. J., Parker R., Larremore D. B. Rethinking Covid-19 Test Sensitivity - A Strategy for Containment. N Engl J Med., 2020, vol. 383, no. 22, pp. 120.

Kleinstiver B. P., Tsai S. Q., Prew M. S., Nguyen N. T., Welch M. M., Lopez J. M., McCaw Z. R., Aryee M. J., Joung J. K. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol., 2016, vol. 34, no. 8, pp. 869-74.

Kim D., Kim J., Hur J. K., Been K. W., Yoon S. H., Kim J. S. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol., 2016, vol. 34, no.8, pp. 863-8.

Stella S., Alcón P., Montoya G. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature, 2017, vol. 546, no. 7659, pp. 559-563.

Dong D., Ren K., Qiu X., Zheng J., Guo M., Guan X., Liu H., Li N., Zhang B., Yang D., Ma C., Wang S., Wu D., Ma Y., Fan S., Wang J., Gao N., Huang Z. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature, 2016, vol. 532, no. 7600, pp. 522-6.

Yamano T., Nishimasu H., Zetsche B., Hirano H., Slaymaker I. M., Li Y., Fedorova I., Nakane T., Makarova K. S., Koonin E. V., Ishitani R., Zhang F., Nureki O. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 2016, vol. 165, no. 4, pp. 949-62.

Chen J. S., Ma E., Harrington L. B., Da Costa M., Tian X., Palefsky J. M., Doudna J. A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, vol. 360, no. 6387, pp. 436-439.

Harrington L. B., Burstein D., Chen J. S., Paez-Espino D., Ma E., Witte I. P., Cofsky J. C., Kyrpides N. C., Banfield J. F., Doudna J. A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, vol. 362, no. 6416, pp. 839-842.

Jacobsen T., Ttofali F., Liao C., Manchalu S., Gray B. N., Beisel C. L. Characterization of Cas12a nucleases reveals diverse PAM profiles between closely-related orthologs. Nucleic Acids Res., 2020, vol. 48, no. 10, pp. 5624-5638.

Xiao G., Liu S., Liu H., He X., Zhang S., Liang Z., Guo H., Ou M., Zhou L., Liu L., Zhang T., Zhang G. CRISPR/Cas12a-based biosensing platform for precise and efficient screening of CRISPR/Cas9-induced biallelic mutants. Talanta, 2020, vol. 210, pp. 120613.

Chen Y., Mei Y., Jiang X. Universal and high-fidelity DNA single nucleotide polymorphism detection based on a CRISPR/Cas12a biochip. Chem Sci., 2021, vol. 12, no. 12, pp. 4455-4462.

Ma L., Yin L., Li X., Chen S., Peng L., Liu G., Ye S., Zhang W., Man S. A smartphone-based visual biosensor for CRISPR-Cas powered SARS-CoV-2 diagnostics. Biosens Bioelectron., 2022, vol. 195, pp. 113646.

Ali Z., Aman R., Mahas A., Rao G. S., Tehseen M., Marsic T., Salunke R., Subudhi A. K., Hala S. M., Hamdan S. M., Pain A., Alofi F. S., Alsomali A., Hashem A. M., Khogeer A., Almontashiri N. A. M., Abedalthagafi M., Hassan N., Mahfouz M. M. iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res., 2020, vol. 288, pp. 198129.

Broughton J. P., Deng X., Yu G., Fasching C. L., Servellita V., Singh J., Miao X., Streithorst J. A., Granados A., Sotomayor-Gonzalez A., Zorn K., Gopez A., Hsu E., Gu W., Miller S., Pan C. Y., Guevara H., Wadford D. A., Chen J. S., Chiu C. Y. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol., 2020, vol. 38, no. 7, pp. 870-874.

Broughton J. P., Deng X., Yu G., Fasching C. L., Singh J., Streithorst J., Granados A., Sotomayor-Gonzalez A., Zorn K., Gopez A., Hsu E., Gu W., Miller S., Pan C. Y., Guevara H., Wadford D. A., Chen J. S., Chiu C. Y. Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a CRISPR-based DETECTR Lateral Flow Assay. medRxiv., 2020, Crossref

Chen Y., Shi Y., Chen Y., Yang Z., Wu H., Zhou Z., Li J., Ping J., He L., Shen H., Chen Z., Wu J., Yu Y., Zhang Y., Chen H. Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in the point-of-care detection. Biosens Bioelectron., 2020, vol. 169, pp. 112642.

Ding X., Yin K., Li Z., Lalla R. V., Ballesteros E., Sfeir M. M., Liu C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. NatCommun., 2020, vol. 11, no. 1, pp. 4711.

Guo L., Sun X., Wang X., Liang C., Jiang H., Gao Q., Dai M., Qu B., Fang S., Mao Y., Chen Y., Feng G., Gu Q., Wang R. R., Zhou Q., Li W. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov., 2020, vol. 6, pp. 34.

Huang Z., Tian D., Liu Y., Lin Z., Lyon C. J., Lai W., Fusco D., Drouin A., Yin X., Hu T., Ning B. Ultra-sensitive and high-throughput CRISPR-p owered COVID-19 diagnosis. Biosens Bioelectron., 2020, vol. 164, pp. 112316.

Ramachandran A., Huyke D. A., Sharma E., Sahoo M. K., Huang C., Banaei N., Pinsky B. A., Santiago J. G. Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2. Proc Natl Acad Sci U S A, 2020, vol. 117, no. 47, pp. 29518-29525.

Wang X., Zhong M., Liu Y., Ma P., Dang L., Meng Q., Wan W., Ma X., Liu J., Yang G., Yang Z., Huang X., Liu M. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Sci Bull (Beijing), 2020, vol. 65, no. 17, pp. 1436-1439.

Xiong D., Dai W., Gong J., Li G., Liu N., Wu W., Pan J., Chen C., Jiao Y., Deng H., Ye J., Zhang X., Huang H., Li Q., Xue L., Zhang X., Tang G. Rapid detection of SARS-CoV-2 with CRISPR-Cas12a. PLoS Biol., 2020, vol. 18, no. 12, pp. e3000978.

Curti L. A., Primost I., Valla S., Ibañez Alegre D., Olguin Perglione C., Repizo G. D., Lara J., Parcerisa I., Palacios A., Llases M. E., Rinflerch A., Barrios M., Pereyra Bonnet F., Gimenez C. A., Marcone D. N. Evaluation of a Lyophilized CRISPR-Cas12 Assay for a Sensitive, Specific, and Rapid Detection of SARS-CoV-2. Viruses, 2021, vol. 13, no.3. https://doi: 10.3390/v13030420.

Ding X., Yin K., Li Z., Sfeir M. M., Liu C. Sensitive quantitative detection of SARS-CoV-2 in clinical samples using digital warm-start CRISPR assay. Biosens Bioelectron., 2021, vol. 184, pp. 113218.

Garcia-Venzor A., Rueda-Zarazua B., Marquez-Garcia E., Maldonado V., Moncada-Morales A., Olivera H., Lopez I., Zuñiga J., Melendez-Zajgla J. SARS-CoV-2 Direct Detection Without RNA Isolation With Loop-Mediated Isothermal Amplification (LAMP) and CRISPR-Cas12. Front Med (Lausanne), 2021, vol. 8, pp. 627679.

Huang D., Shi Z., Qian J., Bi K., Fang M., Xu Z. A CRISPR-Cas12a-derived biosensor enabling portable personal glucose meter readout for quantitative detection of SARS-CoV-2. Biotechnol Bioeng., 2021, vol. 118, no. 4, pp. 1587-1596.

Meng Q., Wang X., Wang Y., Dang L., Liu X., Ma X., Chi T., Wang X., Zhao Q., Yang G., Liu M., Huang X., Ma P. Detection of the SARS-CoV-2 D614G mutation using engineered Cas12a guide RNA. Biotechnol J., 2021, vol. 16, no. 6: e2100040.

Ning B., Yu T., Zhang S., Huang Z., Tian D., Lin Z., Niu A., Golden N., Hensley K., Threeton B., Lyon C. J., Yin X. M., Roy C. J., Saba N. S., Rappaport J., Wei Q., Hu T. Y. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Sci Adv., 2021, vol. 7, no. 2.

Ooi K. H., Liu M. M., Tay J. W. D., Teo S. Y., Kaewsapsak P., Jin S., Lee C. K., Hou J., Maurer-Stroh S., Lin W., Yan B., Yan G., Gao Y. G., Tan M. H. An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides enable robust and rapid COVID-19 testing. Nat Commun., 2021, vol. 12, no. 1, pp. 1739.

Park J. S., Hsieh K., Chen L., Kaushik A., Trick A. Y., Wang T. H. Digital CRISPR/Cas-Assisted Assay for Rapid and Sensitive Detection of SARS-CoV-2. Adv Sci (Weinh), 2021, vol. 8, no. 5, pp. 2003564.

Rezaei M., Razavi Bazaz S., Morshedi Rad D., Shimoni O., Jin D., Rawlinson W., Ebrahimi Warkiani M. A Portable RT-LAMP/CRISPR Machine for Rapid COVID-19 Screening. Biosensors (Basel), 2021, vol. 11, no. 10. Crossref

Silva F. S. R., Erdogmus E., Shokr A., Kandula H., Thirumalaraju P., Kanakasabapathy M. K., Hardie J. M., Pacheco L. G. C., Li J. Z., Kuritzkes D. R., Shafiee H. SARS-CoV-2 RNA Detection by a Cellphone-Based Amplification-Free System with CRISPR/CAS-Dependent Enzymatic (CASCADE) Assay. Adv Mater Technol., 2021, Crossref

Wang R., Qian C., Pang Y., Li M., Yang Y., Ma H., Zhao M., Qian F., Yu H., Liu Z., Ni T., Zheng Y., Wang Y. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection. Biosens Bioelectron., 2021, vol. 172, pp. 112766.

Zhu X., Wang X., Li S., Luo W., Zhang X., Wang C., Chen Q., Yu S., Tai J., Wang Y. Rapid, Ultrasensitive, and Highly Specific Diagnosis of COVID-19 by CRISPR-Based Detection. ACS Sens., 2021, vol. 6, no. 3, pp. 881-888.

Nguyen L. T., Smith B. M., Jain P. K. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection. Nat Commun., 2020, vol. 11, no. 1, pp. 4906.

Pang B., Xu J., Liu Y., Peng H., Feng W., Cao Y., Wu J., Xiao H., Pabbaraju K., Tipples G., Joyce M. A., Saffran H. A., Tyrrell D. L., Zhang H., Le X. C. Isothermal Amplification and Ambient Visualization in a Single Tube for the Detection of SARS-CoV-2 Using Loop-Mediated Amplification and CRISPR Technology. Anal Chem., 2020, vol. 92, no.24, pp. 16204-16212.

Zhang Y., Chen M., Liu C., Chen J., Luo X., Xue Y., Liang Q., Zhou L., Tao Y., Li M., Wang D., Zhou J., Wang J. Sensitive and rapid on-site detection of SARS-CoV-2 using a gold nanoparticle-based high-throughput platform coupled with CRISPR/Cas12-assisted RT-LAMP. Sens Actuators B Chem., 2021, vol. 345, pp. 130411.

Cao Y., Wu J., Pang B., Zhang H., Le X. C. CRISPR/Cas12a-mediated gold nanoparticle aggregation for colorimetric detection of SARS-CoV-2. Chem Commun (Camb)., 2021, vol. 57, no. 56, pp. 6871-6874.

Liang J., Teng P., Xiao W., He G., Song Q., Zhang Y., Peng B., Li G., Hu L., Cao D., Tang Y. Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples. Nanobiotechnology, 2021, vol. 19, no. 1, pp. 273.

Qian C., Wang R., Wu H., Zhang F., Wu J., Wang L. Uracil-Mediated New Photospacer-Adjacent Motif of Cas12a To Realize Visualized DNA Detection at the Single-Copy Level Free from Contamination. Anal Chem, 2019, vol. 91, no. 17, pp. 11362-11366.

Al-Shayeb B., Sachdeva R., Chen L. X., Ward F., Munk P., Devoto A., … Clades of huge phages from across Earth's ecosystems. Nature, 2020, vol. 578, no.7795, pp. 425-431.

Pausch P., Al-Shayeb B., Bisom-Rapp E., Tsuchida C. A., Li Z., Cress B. F., Knott G. J., Jacobsen S. E., Banfield J. F., Doudna J. A. CRISPR-CasΦ from huge phages is a hypercompact genome editor. Science, 2020, vol. 369, no.6501, pp. 333-337.

Lee S., Kim T., Lee E., Lee C., Kim H., Rhee H., Park S. Y., Son H. J., Yu S., Park J. W., Choo E. J., Park S., Loeb M., Kim T. H. Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients With SARS-CoV-2 Infection in a Community Treatment Center in the Republic of Korea. JAMA Intern Med., 2020.10.1001/jamainternmed.2020.3862.

Udugama B., Kadhiresan P., Kozlowski H. N., Malekjahani A., Osborne M., Li V. Y. C., Chen H., Mubareka S., Gubbay J. B., Chan W. C. W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano, 2020, vol. 14, no. 4, pp. 3822-3835.

Hussein H. A., Hassan R. Y. A., Chino M., Febbraio F. Point-of-Care Diagnostics of COVID-19: From Current Work to Future Perspectives. Sensors (Basel), 2020, vol. 20, no. 15.

Joung J., Ladha A., Saito M., Segel M., Bruneau R., Huang M. W., Kim N. G., Yu X., Li J., Walker B. D., Greninger A. L., Jerome K. R., Gootenberg J. S., Abudayyeh O. O., Zhang F. Point-of-care testing for COVID-19 using SHERLOCK diagnostics // medRxiv. ‒ 2020.10.1101/2020.05.04.20091231.