Study of proteolytic and keratinolytic enzymes of bacillus sp. A5.3

Main Article Content


S. Aktaeva

L.N. Gumilyov EurasianNational University, 2, Satpayeva str., Nur-Sultan city, 010000, Kazakhstan

M. Saparbayev

Gustav Russi Institute, 114 Rue Edouard Vaillant, 94800 Villejuif, France


Feathers, as a major part of the waste from the industrial poultry industry, require a special approach for disposal and, at the same time, are of interest as a source of feed protein. Feather biomass consists of 90% β-keratin, hydrolysates of which can be a valuable source of pepton, but feather keratin is highly resistant to most proteolytic enzymes. For hydrolysis, therefore, keratin must be subjected to special treatment, the purpose of which is to break down the compact structure of the keratin molecule to produce polypeptides, peptides and single amino acids.  For enzymatic hydrolysis of keratin, proteases with keratinase activity are used, capable of cleaving keratin disulfide bonds.  A strain of Bacillus sp. A5.3 was isolated from feather waste sites and showed high proteolytic and keratinolytic activity. The strain is able to grow on minimal feather medium and has caseinolytic, collagenase and β-keratinolytic activity. The secretory proteome of the strain was studied using nano HPLC/Q-TOF-MS. As a result, 154 proteins were identified, 13 of which are proteases and peptidases. The genes for 3 proteases and peptidases clpY, clpX and ytjP were amplified from the genomic DNA of Bacillus sp. A5.3, sequenced, and the nucleotide sequence of the genes was deposited in the GenBank database. A study of a strain of Bacillus sp. A5.3 showed that the strain is capable of effective feather degradation and promising as a producer of proteolytic and keratinolytic enzymes.


keratinase, Bacillus, feathers, SEM

Article Details


Razzaq A., Shamsi S., Ali A., Ali Q., Sajjad M., Malik A., Ashraf M. Microbial proteases applications. Frontiers in bioengineering and biotechnology., 2019., vol. 7.pp. 1-20.

Papadopoulos M. C. The effect of enzymatic treatment on amino acid content and nitrogen characteristics of feather meal. Animal feed science and technology., 1986., vol. 16, no. 1/2., pp.151-156.

Adler S. A., Slizyte R., Honkapää K., Løes A. K. In vitro pepsin digestibility and amino acid composition in soluble and residual fractions of hydrolyzed chicken feathers. Poult. Sci., 2018., vol. 97, no. 9., pp.3343-3357.

Akpor O. B., Odesola D. E., Thomas R. E., Oluba O. M. Chicken feather hydrolysate as alternative peptone source for microbial cultivation. F1000Research., 2018., vol. 7., pp.1918.

Taskin M., Kurbanoglu E. B. Evaluation of waste chicken feathers as peptone source for bacterial growth. J Appl Microbiol., 2011., vol. 111, no. 4., pp.826-34.

Bandegan A., Kiarie E., Payne R. L., Crow G. H., Guenter W., Nyachoti C. M. Standardized ileal amino acid digestibility in dry-extruded expelled soybean meal, extruded canola seed-pea, feather meal, and poultry by-product meal for broiler chickens. Poult. Sci., 2010., vol. 89, no. 12., pp.2626-33.

Glem-Hansen N. The requirements for sulphur containing amino acids of mink during the growth period. Acta Agriculturae Scandinavica., 1980., vol. 30, no. 3., pp.349-356.

Ramnani P., Singh R., Gupta R. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can. J. Microbiol., 2005., vol. 51, no. 3., pp.191-6.

Lasekan A., Abu Bakar F., Hashim D. Potential of chicken by-products as sources of useful biological resources. Waste Manag., 2013., vol. 33, no. 3., pp.552-65.

Gupta R., Ramnani P. Microbial keratinases and their prospective applications: an overview. Appl. Microbiol. Biotechnol., 2006., vol. 70, no. 1., pp.21-33.

Brandelli A., Daroit D. J., Riffel A. Biochemical features of microbial keratinases and their production and applications. Appl. Microbiol. Biotechnol., 2010., vol. 85, no. 6., pp.1735-50.

Gradisar H., Friedrich J., Krizaj I., Jerala R. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol., 2005., vol. 71, no. 7., pp.3420-6.

Muhsin T. M., Hadi R. B. Degradation of keratin substrates by fungi isolated from sewage sludge. Mycopathologia., 2002., vol. 154, no. 4., pp.185-9.

Lopes F. C., Silva L. A., Tichota D. M., Daroit D. J., Velho R. V., Pereira J. Q., Corrêa A. P., Brandelli A. Production of proteolytic enzymes by a keratin-degrading Aspergillus niger. Enzyme Res., 2011., vol. 2011., pp.487093.

Bohacz J. Biodegradation of feather waste keratin by a keratinolytic soil fungus of the genus Chrysosporium and statistical optimization of feather mass loss. World. J. Microbiol. Biotechnol., 2017., vol. 33, no. 1., pp.13.

Ignatova Z., Gousterova A., Spassov G., Nedkov P. Isolation and partial characterisation of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus. Can. J. Microbiol., 1999., vol. 45, no. 3., pp.217-22.

Matikevičienė V., Grigiškis S., Levisauskas D., Sirvydytė K., Dižavičienė O., Masiliūnienė D., Ančenko O. Optimization of keratinase production by actinomyces fradiae 119 and its application in degradation of keratin containing wastes. 8th International Scientific and practical conference “Environment. Technology. Resources.”, vol. 1: III Environmental technologies., Rēzekne: Rēzeknes Augstskola, 2015., pp.294.

Williams C. M., Richter C. S., Mackenzie J. M., Shih J. C. Isolation, identification, and characterization of a feather-degrading bacterium. App.l Environ. Microbiol., 1990., vol. 56, no. 6., pp.1509-15.

Tamreihao K., Mukherjee S., Khunjamayum R., Devi L. J., Asem R. S., Ningthoujam D. S. Feather degradation by keratinolytic bacteria and biofertilizing potential for sustainable agricultural production. J. Basic. Microbiol., 2019., vol. 59, no. 1., pp.4-13.

Lin H. H., Yin L. J., Jiang S. T. Cloning, expression, and purification of Pseudomonas aeruginosa keratinase in Escherichia coli AD494(DE3)pLysS expression system. J. Agric. Food. Chem., 2009., vol. 57, no. 9., pp.3506-11.

Hu H., He J., Yu B., Zheng P., Huang Z., Mao X., Yu J., Han G., Chen D. Expression of a keratinase (kerA) gene from Bacillus licheniformis in Escherichia coli and characterization of the recombinant enzymes. Biotechnol. Lett., 2013., vol. 35, no. 2., pp.239-44.

Wang L., Zhou Y., Huang Y., Wei Q., Huang H., Guo C. Cloning and expression of a thermostable keratinase gene from Thermoactinomyces sp. YT06 in Escherichia coli and characterization of purified recombinant enzymes, World. J. Microbiol. Biotechnol., 2019., vol. 35, no. 9., pp.135.

Deivasigamani B., Alagappan K. M. Industrial application of keratinase and soluble proteins from feather keratins. J. Environ. Biol., 2008., vol. 29, no. 6., pp.933-6.

John G. Holt, Peter H. Sneath, Noel R. Krieg. Bergey’s Manual of Systematic Bacteriology. LWW; Ninth edition. 1994, 787 p.

Anderson A. C., Sanunu M., Schneider C., Clad A., Karygianni L., Hellwig E., Al-Ahmad A. Rapid species-level identification of vaginal and oral lactobacilli using MALDI-TOF MS analysis and 16S rDNA sequencing. BMC microbiology. 2014., vol. 14, no. 312.

Avanzi I. R., Gracioso L. H., Baltazar M. P. G., Karolski B., Perpetuo E. A., Nascimento C. A. O. Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environ Sci Pollut Res., 2017., no. 24., pp. 3717–3726.

Vermelho A. B., Mazotto A. M., Cedrola S.M.L.. Keratinases: Detection Methods. Methods to determine enzymatic activity, U.A.E.: Bentham Science Publishers, 2013., pp.226-261.

Kulyyassov A., Shoaib M., Pichugin A., Kannouche P., Ramanculov E., Lipinski M., Ogryzko V. PUB-MS: a mass spectrometry-based method to monitor protein-protein proximity in vivo. J Proteome Res., 2011., vol. 10, no. 10., pp.4416-27.

Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem., 1996., vol. 68, no. 5., pp.850-8.