Gut Microbiota Modulation In Diabetic Patients

Main Article Content

Authors

S.S. Kozhakhmetov

National Laboratory Astana, Nazarbayev University, 53, Kabanbay batyr ave., Nur-Sultan, 010000, Kazakhstan
Kazakhstan Association of Human Microbiome Researchers, Nur-Sultan, 010000, Kazakhstan
Innovative Center ArtScience, Nur-Sultan, 010000, Kazakhstan

N. Mukhanbetzhanov

National Laboratory Astana, Nazarbayev University, 53, Kabanbay batyr ave., Nur-Sultan, 010000, Kazakhstan
Innovative Center ArtScience, Nur-Sultan, 010000, Kazakhstan

А.R Kushugulova

National Laboratory Astana, Nazarbayev University, 53, Kabanbay batyr ave., Nur-Sultan, 010000, Kazakhstan
Kazakhstan Association of Human Microbiome Researchers, Nur-Sultan, 010000, Kazakhstan

Abstract

Metabolic disorders and diabetes mellitus are one of the major complex public health problems in the world, and in fact are becoming a global epidemic. It is associated with an increased risk of a large number of complications, including dyslipidemia, cardiovascular disease. The microbiota modulates inflammation, metabolizes indigestible food components, affects intestinal permeability, glucose and lipid metabolism, insulin sensitivity, and overall energy homeostasis. The study investigated the effect of a multistrain probiotic on the intestinal microflora in diabetic patients. As a result of the work carried out, it was shown that the microbiome of patients with diabetes mellitus differs from normal and is depleted in bifidobacteria and some butyrate producers, such as Subdoligranulum, but enriched in Prevotella. The use of a multi-strain probiotic has led to an increase in the biodiversity of the intestinal microflora. Also, in the fecal samples, the content of acetate and butyrate increased, while the concentration of propionate decreased markedly.

Keywords

microbiome, gut, short-chain fatty acids, probiotic, taxon, diversity

Article Details

References

David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, vol.505, no.7484, pp.559-563. Crossref

Khan M.T., Nieuwdorp M., Bäckhed F. Microbial modulation of insulin sensitivity. Cell Metab., 2014, vol.20, no.5, pp. 753-60. Crossref

Le Barz M., Anhê F.F., Varin T.V., Desjardins Y., Levy E., Roy D., et al. Probiotics as Complementary Treatment for Metabolic Disorders. Diabetes Metab J., 2015, vol.39, no. 4, pp. 291-303. Crossref

Yoshida N., Yamashita T., Hirata K.-I. Gut Microbiome and Cardiovascular Diseases. Dis (Basel, Switzerland), 2018, vol.6, no. 3, pp.56. Crossref

Karlsson F., Tremaroli V., Nielsen J., Bäckhed F. Assessing the human gut microbiota in metabolic diseases. Diabetes, 2013, vol.62, no. 10, pp. 3341-3349. Crossref

Lapthorne S., Pereira-Fantini P.M., Fouhy F., Wilson G., Thomas S.L., Dellios N.L., et al. Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome. Gut Microbes., 2013, vol 4, no. 3, pp.212-221. Crossref

Ahn J., Sinha R., Pei Z., Dominianni C., Wu J., Shi J., et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst., 2013, vol.105, no. 24, pp.1907-1911. Crossref

Hamaker B.R., Tuncil Y.E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J Mol Biol., 2014, vol.426, no 23, pp.3838-3850. Crossref

Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F.. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell., 2016, vol.165, no. 6, pp.1332-1345. Crossref

Duncan S.H., Russell W.R., Quartieri A., Rossi M., Parkhill J., Walker A.W., et al. Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid. Environ Microbiol., 2016, vol.18, no. 7, pp .2214-2225. Crossref

Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol., 2015, vol.11, no.10, pp.577-591. Crossref

Kushugulova A., Forslund S.K., Costea P.I., Kozhakhmetov S., Khassenbekova Z., Urazova M., et al. Metagenomic analysis of gut microbial communities from a Central Asian population. BMJ Open., 2018, vol.8, no. 7. - e021682–e021682. Crossref

Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, vol. 490, pp.55-60. Crossref

Bartolomaeus H., Balogh A., Yakoub M., Homann S., Markó L., Höges S., et al. Short-Chain Fatty Acid Propionate Protects From Hypertensive Cardiovascular Damage, Circulation, 2019, vol.139, no. 11, pp.1407-1421. Crossref

Zhang J.-M., Sun Y.-S., Zhao L.-Q., Chen T.-T., Fan M.-N., Jiao H.-C., et al. SCFAs-Induced GLP-1 Secretion Links the Regulation of Gut Microbiome on Hepatic Lipogenesis in Chickens. Front Microbiol., 2019, vol. 10, pp. 2176. Crossref

Hildebrand F., Tadeo R., Voigt A.Y., Bork P., Raes J. LotuS: an efficient and user-friendly OTU processing pipeline. Microbiome, 2014, vol.2, no.1, pp.30. Crossref

Oksanen A.J., Blanchet F.G., Friendly M., Kindt R., Legendre P., Mcglinn D., et al. Package ‘ vegan .’ -2020.

Liebisch G., Ecker J., Roth S., Schweizer S., Öttl V., Schött H.-F., et al. Quantification of Fecal Short Chain Fatty Acids by Liquid Chromatography Tandem Mass Spectrometry-Investigation of Pre-Analytic Stability. Biomolecules, 2019, vol. 9, no.4, pp.121. Crossref

Gallego S.F., Hermansson M., Liebisch G., Hodson L., Ejsing C.S. Total Fatty Acid Analysis of Human Blood Samples in One Minute by High-Resolution Mass Spectrometry. Biomolecules, 2018, vol.9, no.1, pp.7. Crossref

Kozhakhmetov S., Babenko D., Kozhakhmetova S., Tuyakova A., Nurgaziyev M., Nurgozhina A., et al. Gut modulation of dysbiosis induced by dextran sulfate sodium. Food Biosci., 2021, vol. 42, pp.101167. Crossref

McMurdie P.J., Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One, 2013, vol.8, no.4, :e61217. Crossref

Qian L., Gao R., Huang J., Qin H. Supplementation of triple viable probiotics combined with dietary intervention is associated with gut microbial improvement in humans on a high‑fat diet. Exp Ther Med., 2019, vol.18, no.3, pp. 2262-2270. Crossref

Yoneshiro T., Wang Q., Tajima K., Matsushita M., Maki H., Igarashi K., et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019, vol. 572, no. 7771, pp.614-619. Crossref

O’Grady J., O’Connor E.M., Shanahan F. Review article: dietary fibre in the era of microbiome science. Aliment Pharmacol Ther., 2019, vol.49, no. 5, pp. 506-515. Crossref

Nagpal R., Wang S., Ahmadi S., Hayes J., Gagliano J., Subashchandrabose S, et al. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci Rep., 2018, vol.8, no 1, pp.12649. Crossref

Bartolomaeus H., Avery E.G., Bartolomaeus T.U.P., Kozhakhmetov S., Zhumadilov Z., Müller D.N., et al. Blood pressure changes correlate with short-chain fatty acid production potential shifts under a synbiotic intervention. Cardiovasc Res., 2020, vol.116, no. 7, pp.1252- 1253. Crossref

Li Z., Yi C.-X., Katiraei S., Kooijman S., Zhou E., Chung C.K., et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut., 2018, vol.67, no.7, pp.1269-1279. Crossref

Boets E., Gomand S.V., Deroover L., Preston T., Vermeulen K., De Preter V., et al. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J Physiol., 2017, vol.595, no. 2, pp.541-555. Crossref