Main Article Content


A. Kiribayeva

National center for biotechnology, 13/5, Kurgalzhynskoye road, Nur-Sultan, 010000, Kazakhstan
L.N.Gumilyov Eurasian National University, 2, Satpayev str., Nur-Sultan, 010000, Kazakhstan

D. Silayev

National center for biotechnology, 13/5, Kurgalzhynskoye road, Nur-Sultan, 010000, Kazakhstan

A. Abdullayeva

National center for biotechnology, 13/5, Kurgalzhynskoye road, Nur-Sultan, 010000, Kazakhstan

Ye. Ramankulov

National center for biotechnology, 13/5, Kurgalzhynskoye road, Nur-Sultan, 010000, Kazakhstan

B. Khassenov

National center for biotechnology, 13/5, Kurgalzhynskoye road, Nur-Sultan, 010000, Kazakhstan


The main renewable source of energy and raw materials on Earth is plant biomass, most of which consists of plant cell wall polymers: cellulose, hemicellulose, and lignin. Hemicelluloses are divided into three main types: xylans, mannans and arabinogalactans. Xylan is the second most abundant carbohydrate in nature after cellulose. The specific enzymes that hydrolyze xylan into xylooligosaccharides and D-xylose are xylanases. Prospective xylanases are enzymes derived from bacteria and mycelial fungi. Bacterial xylanases are characterized by high unitary activity, and additional manose chains can significantly increase the stability of the enzyme protein globule.  Obtaining a glycosylated variant of bacillary xylanase, which are known for their high specific activity, seems promising.

The Bacillus sonorensis T6 xylanase gene was cloned and expressed in the yeast Pichia pastoris. The recombinant xylanase was isolated and purified. The biochemical characteristics of the glycosylated recombinant xylanase were studied.  It was found that the recombinant xylanase had maximum activity at 47-50°C and pH 6.0. The Km, Vmax and Kcat values are 3.037 ± 0.362 (mg/ml), 667.8 ± 31 (units/mg) and 100.3 ± 4.6 (s-1), respectively. The unitary activity of the recombinant enzyme is 873.8 units/mg. The glycosylated recombinant xylanase was found to have high temperature stability and retained 47% activity after a 2-hour incubation at 55°C. In addition to temperature stability, recombinant xylanase showed high pH stability - 10 h incubation in buffers with pH 3-11 did not decrease the activity. The effect of metal ions, detergents, and organic solvents on the activity of recombinant glycosylated xylanase was studied.

The high biochemical parameters of recombinant glycosylated xylanase from Bacillus sonorensis T6 suggest that this enzyme is promising for use in the biotechnology and food industry.


xylanase, Pichia pastoris, xylan, recombinant enzyme, glycosylation

Article Details


Sixtra H. Handbook of Pulp // Wiley-VCH. – 2006. – P. 1348

Wickramasinghe G., Rathnayake P., Chandrasekharan N. V., Weerasinghe M. S. S., Wijesundera R. L. C., Wijesundera W. S. S. Expression, Docking, and Molecular Dynamics of Endo-beta-1,4-xylanase I Gene of Trichoderma virens in Pichia stipitis // BioMed research international. ‒ 2017. ‒ Vol. 2017. ‒ P. 4658584. PMID: 28856159. DOI: 10.1155/2017/4658584

Chakdar H., Kumar M., Pandiyan K., Singh A., Nanjappan K., Kashyap P. L., Srivastava A. K. Bacterial xylanases: biology to biotechnology // 3 Biotech. ‒ 2016. ‒ Vol. 6, N 2. ‒ P. 150. PMID: 28330222. DOI: 10.1007/s13205-016-0457-z.

Juturu V., Wu J. C. Microbial xylanases: engineering, production and industrial applications // Biotechnol. Adv. ‒ 2012. ‒ Vol. 30, N 6. ‒ P. 1219-1227. PMID: 22138412.

Sridevi A., Ramanjaneyulu G., Suvarnalatha Devi P. Biobleaching of paper pulp with xylanase produced by Trichoderma asperellum // 3 Biotech. ‒ 2017. ‒ Vol. 7, N 4. ‒ P. 266. PMID: 28794921. DOI: 10.1007/s13205-017-0898-z.

Ghoshal G., Shivhare U. S., Banerjee U. C. Rheological properties and microstructure of xylanase containing whole wheat bread dough // J Food Sci Technol. ‒ 2017. ‒ Vol. 54, N 7. ‒ P. 1928-1937. PMID: 28720949. DOI: 10.1007/s13197-017-2627-3.

Liu W., Brennan M. A., Serventi L., Brennan C. S. Effect of cellulase, xylanase and alpha-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran // Food Chem. ‒ 2017. ‒ Vol. 234. ‒ P. 93-102.

Jagtap S., Deshmukh R. A., Menon S., Das S. Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals // Bioresour Technol. ‒ 2017. ‒ Vol. 245. ‒ P. 283-288. PMID: 28892703. DOI: 10.1016/j.biortech.2017.08.174.

Nieto-Dominguez M., de Eugenio L. I., York-Duran M. J., Rodriguez-Colinas B., Plou F. J., Chenoll E., Pardo E., Codoner F., Jesus Martinez M. Prebiotic effect of xylooligosaccharides produced from birchwood xylan by a novel fungal GH11 xylanase // Food Chem. ‒ 2017. ‒ Vol. 232. ‒ P. 105-113. PMID: 28490053. DOI: 10.1016/j.foodchem.2017.03.149.

Aftab M. N., Zafar A., Iqbal I., Kaleem A., Zia K. M., Awan A. R. Optimization of saccharification potential of recombinant xylanase from Bacillus licheniformis // Bioengineered. ‒ 2017. – Vol. 9, N 1. – P. 159-165.PMID: 28886289.

Parab P., Khandeparker R., Amberkar U., Khodse V. Enzymatic saccharification of seaweeds into fermentable sugars by xylanase from marine Bacillus sp. strain BT21 // 3 Biotech. ‒ 2017. ‒ Vol. 7, N 5. ‒ P. 296. PMID: 28868223. DOI: 10.1007/s13205-017-0921-4.

Khandeparker R., Parab P., Amberkar U. Recombinant Xylanase from Bacillus tequilensis BT21: Biochemical Characterisation and Its Application in the Production of Xylobiose from Agricultural Residues // Food Technol Biotechnol. ‒ 2017. ‒ Vol. 55, N 2. ‒ P. 164-172. PMID: 28867946. DOI: 10.17113/ftb.

Mallek-Fakhfakh H., Fakhfakh J., Walha K., Hassairi H., Gargouri A., Belghith H. Enzymatic hydrolysis of pretreated Alfa fibers (Stipa tenacissima) using beta-d-glucosidase and xylanase of Talaromyces thermophilus from solid-state fermentation // Int J Biol Macromol. ‒ 2017. ‒ Vol. 103. ‒ P. 543-553. PMID: 28527996. DOI: 10.1016/j.ijbiomac.2017.05.078

Gallardo C., Dadalt J. C., Kiarie E., Trindade Neto M. A. Effects of multi-carbohydrase and phytase on standardized ileal digestibility of amino acids and apparent metabolizable energy in canola meal fed to broiler chicks // Poult Sci. ‒ 2017. ‒ Vol. 96, N 9. ‒ P. 3305-3313. PMID: 28854754. DOI: 10.3382/ps/pex141.

Korkmaz M. N., Ozdemir S. C., Uzel A. Xylanase production from marine derived Trichoderma pleuroticola 08CK001 strain isolated from Mediterranean coastal sediments // J Basic Microbiol. ‒ 2017. – Vol. 57, N 10. – Р. 839-851. PMID: 28758291. DOI: 10.1002/jobm.201700135

Daas M. J. A., Martinez P. M., van de Weijer A. H. P., van der Oost J., de Vos W. M., Kabel M. A., van Kranenburg R. Biochemical characterization of the xylan hydrolysis profile of the extracellular endo-xylanase from Geobacillus thermodenitrificans T12 // BMC Biotechnol. ‒ 2017. ‒ Vol. 17, N 1. ‒ P. 44. PMID: 28521816. DOI: 10.1186/s12896-017-0357-2.

Ali S. S., Wu J., Xie R., Zhou F., Sun J., Huang M. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis // PLoS One. ‒ 2017. ‒ Vol. 12, N 7. ‒ E. 0181141. PMID: 28704553. DOI: 10.1371/journal.pone.0181141.

Wang H, Yang L, Ping Y, Bai Y, Luo H, Huang H, Yao B. Engineering of a Bacillus amyloliquefaciens Strain with High Neutral Protease Producing Capacity and Optimization of Its Fermentation Conditions // PLoSOne. – 2016. – Vol. 11, N 1. – Р. 146373. PMID: 26752595. DOI: 10.1371/journal.pone.0146373

Orita T., Sakka M., Kimura T., Sakka K. Characterization of Ruminiclostridium josui arabinoxylan arabinofuranohydrolase, RjAxh43B, and RjAxh43B-containing xylanolytic complex // Enzyme Microb Technol. ‒ 2017. ‒ Vol. 104. ‒ P. 37-43. PMID: 28648178. DOI: 10.1016/j.enzmictec.2017.05.008.

Sahay H., Yadav A. N., Singh A. K., Singh S., Kaushik R., Saxena A. K. Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes // 3 Biotech. ‒ 2017. ‒ Vol. 7, N 2. ‒ P. 118. PMID: 28567630. DOI: 10.1007/s13205-017-0762-1.

Sari E, Loğoğlu E, Öktemer A. Purification and characterization of organic solvent stable serine alkaline protease from newly isolated Bacillus circulans M34 // Biomedical Chromatography. – 2015. – Vol. 29, N 9. – P. 1356-1363. PMID: 25677873. DOI: 10.1002/bmc.3431

Miller G. L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar // Analytical Chemistry. ‒ 1959. ‒ Vol. 31. ‒ P. 426-428.