MODULATION OF HELICOBACTER PYLORI TRANSCRIPTIONAL PROFILE BY SUBINHIBITORY CONCENTRATIONS OF RIFAMPICIN

Main Article Content

Authors

Kuvat Momynaliev

National Center for Biotechnology, Sh. Valikhanov str. 13/1, Astana, Kazakhstan

Vera Chelysheva

Research Institute for Physico-Chemical Medicine, Malaya Pirogovskaya 1A, Moscow, Russia

Oksana Selezneva

Research Institute for Physico-Chemical Medicine, Malaya Pirogovskaya 1A, Moscow, Russia

Andrey Larin

Research Institute for Physico-Chemical Medicine, Malaya Pirogovskaya 1A, Moscow, Russia

Tatyana Akopian

Research Institute for Physico-Chemical Medicine, Malaya Pirogovskaya 1A, Moscow, Russia

Dmitry Alexeev

Research Institute for Physico-Chemical Medicine, Malaya Pirogovskaya 1A, Moscow, Russia

Veronique Le Berre

Biochips platform of Genopole, University of Toulouse, INSA, UPS, INP & INRA, 135, Avenue de Rangeuil, F-31077, Toulouse

Serguei Sokol

Biochips platform of Genopole, University of Toulouse, INSA, UPS, INP & INRA, 135, Avenue de Rangeuil, F-31077, Toulouse

Jean-Marie Francois

Biochips platform of Genopole, University of Toulouse, INSA, UPS, INP & INRA, 135, Avenue de Rangeuil, F-31077, Toulouse

Vadim Govorun

Research Institute for Physico-Chemical Medicine, Malaya Pirogovskaya 1A, Moscow, Russia

Abstract

Subinhibitory concentrations (sub - MICs) of antibiotics do not kill bacteria, but they are able to interfere with important aspects of bacterial cell function, such as adhesion to host cells, surface bacterial energy, susceptibility to host defense mechanisms, inhibition of enzyme function and toxin production. In order to understand how H. pylori copes with environmental stress and what facilitates the emergence of RIF mutants in H. pylori, we used DNA microarrays to compare the gene expression profiles of H. pylori in the presence and absence of subinhibitory concentrations of rifampicin (1/16 MIC (0.1 mg/L), 1/8 MIC (0,2mg/L), ¼ MIC (0,4 mg/L), and ½ MIC (0,8 mg/L). We found that еhe expression of 57 genes (of the 1,576 genes analyzed) was increased more than ≥ 1,5 – fold, and the expression of only 29 genes was decreased more than ≤ 1,5 –fold in significant way (p-value < 0,05), when H. pylori was treated with sub – MICs of RIF. No correlation was found between the sub - MICs of RIF and gene expression. We conclude that the alteration in the transcriptional pattern of H. pylori after the exposure to sub – MICs of RIF is mainly due to a direct interaction between rifampicin and the RNA polymerase β-subunit. Finally, we propose that subinhibitory concentrations of rifampicin may lead to an increase in the number of hypermutable cells in the H. pylori population.

Keywords

Helicobacter pylori, selection, microarray, rpoB

Article Details

References

Alm R.A., Ling L.S., Moir D.T., King B.L., Brown E.D., Doig P.C., Smith D.R., Noonan B., Guild B.C., deJonge B.L., Carmel G., Tummino P.J., Caruso A., Uria-Nickelsen M., Mills D.M., Ives C., Gibson R., Merberg D., Mills S.D., Jiang Q., Taylor D.E., Vovis G.F., Trust T.J. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. - 397: 176-180.

Beaber J.W., Hochhut B., Waldor M.K. 2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature. - 427: 72–74.

Beier D., Frank R. 2000. Molecular characterization of two-component systems of Helicobacter pylori. J. Bacteriol. - 182: 2068–2076.

Beletskii A., Bhagwat A.S. 1996. Transcription-induced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc Natl Acad Sci USA. - 93: 13919-13924.

Björkholm B., Sjölund M., Falk P.G., Berg O.G., Engstrand L., Andersson D.I. 2001. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc Natl Acad Sci USA. - 98: 14607-12.

Brazas M.D., Hancock R.E. 2005. Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov. Today 10:1245–1252.

Campbell E.A., Korzheva N., Mustaev A., Murakami K., Nair S., Goldfarb A., Darst S.A. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. - 104: 901-912.

Cirz R.T., Jones M.B., Gingles N.A., Minogue T.D., Jarrahi B., Peterson S.N., Romesberg F.E. 2007. Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J Bacteriol. - 189: 531–539.

Cirz R.T., O’Neill B.M., Hammond J.A., Head S.R., Romesberg F.E. 2006. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol. - 188: 7101–7110.

Davies J., Spiegelman G.B., Yim G. 2006. The world of subinhibitory antibiotic concentrations.Curr Opin Microbiol. - 9: 445-453.

Ge R., Watt R.M., Sun X., Tanner J.A., He Q.Y., Huang J.D., Sun H. 2006. Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. Biochem J. - 393: 285-293.

Gilbert J.V., Ramakrishna J., Sunderman F.W. Jr., Wright A., Plaut A.G. 1995. Protein Hpn: cloning and characterization of a histidine-rich metal-binding polypeptide in Helicobacter pylori and Helicobacter mustelae. Infect Immun. - 63: 2682-2688.

Gillespie S.H., Basu S., Dickens A.L., O'Sullivan D.M., McHugh T.D. 2005. Effect of subinhibitory concentrations of ciprofloxacin on Mycobacterium fortuitum mutation rates. J Antimicrob Chemother. - 56: 344-348.

Goh E.B., Yim G., Tsui W., McClure J., Surette M.G., Davies J. 2002. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA. - 99:17025–17030.

Han J., Sahin O., Barton Y.W., Zhang Q. 2008. Key role of Mfd in the development of fluoroquinolone resistance in Campylobacter jejuni. PLoS Pathog. - 4: e1000083.

Henderson-Begg S.K., Livermore D.M., Hall L.M. 2006. Effect of subinhibitory concentrations of antibiotics on mutation frequency in Streptococcus pneumoniae.J Antimicrob Chemother. - 57: 849-854.

Kelley W.L. 2006. Lex marks the spot: the virulent side of SOS and a closer look at the LexA regulon. Mol Microbiol. - 62: 1228–1238.

Layton J.C., Foster P.L. 2003. Error-prone DNA polymerase IV is controlled by the stress-response sigma factor, RpoS, in Escherichia coli. Mol Microbiol. - 50: 549–561.

Marcus E.A., Moshfegh A.P., Sachs G., Scott D.R. 2005. The periplasmic-carbonic anhydrase activity of Helicobacter pylori is essential for acid acclimation. J. Bacteriol. - 187: 729–738.

Mollenhauer-Rektorschek M., Hanauer G., Sachs G., Melchers K. 2002. Expression of UreI is required for intragastric transit and colonization of gerbil gastric mucosa by Helicobacter pylori. Res. Microbiol. - 153: 659–666.

Power E.G., Phillips I. 1992. Induction of the SOS gene (umuC) by 4-quinolone antibacterial drugs. J Med Microbiol. - 36: 78–82.

Scott D.R., Marcus E.A., Weeks D.L., Lee A., Melchers K., Sachs G. 2000. Expression of the Helicobacter pylori ureI gene is required for acidic pH activation of cytoplasmic urease. Infect. Immun. - 68: 470–477.

Skouloubris S., Thiberge J.M., Labigne A., De Reuse H. 1998. The Helicobacter pylori UreI protein is not involved in urease activity but is essential for bacterial survival in vivo. Infect. Immun. - 66: 4517–4521.

Tomb J.F., White O., Kerlavage A.R., Clayton R.A., Sutton G.G., Fleischmann R.D., Ketchum K.A., Klenk H.P., Gill S., Dougherty B.A., Nelson K., Quackenbush J., Zhou L., Kirkness E.F., Peterson S., Loftus B., Richardson D., Dodson R., Khalak H.G., Glodek A., McKenney K., Fitzegerald L.M., Lee N., Adams M.D., Hickey E.K., Berg D.E., Gocayne J.D., Utterback T.R., Peterson J.D., Kelley J.M., Cotton M.D., Weidman J.M., Fujii C., Bowman C., Watthey L., Wallin E., Hayes W.S., Borodovsky M., Karp P.D., Smith H.O., Fraser C.M., and Venter J.C. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. - 388:539-47.

Wang G., Wilson T.J., Jiang Q., Taylor D.E. 2001. Spontaneous mutations that confer antibiotic resistance in Helicobacter pylori. Antimicrob Agents Chemother. - 45: 727-733.

Weeks D.L., Eskandari S., Scott D.R., Sachs G. 2000. A H + -gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science. - 287: 482–485.

Wen Y., Feng J., Scott D.R., Marcus E.A., Sachs G.J. 2006. Involvement of the HP0165-HP0166 two-component system in expression of some acidic-pH-upregulated genes of Helicobacter pylori. Bacteriol. - 188:1750-1761.

Yim G., de la Cruz F., Spiegelman G.B., Davies J. 2006. Transcription modulation of Salmonella enterica serovar Typhimurium promoters by sub-MIC levels of rifampin. J Bacteriol. - 188: 7988-7991.

Yim G., Wang H.H., Davies J. 2006. The truth about antibiotics. Int. J. Med. Microbiol. 296:163–170.

Ysern P., Clerch B., Castańo M., Gibert I., Barbé J., Llagostera M. 1990. Induction of SOS genes in Escherichia coli and mutagenesis in Salmonella typhimurium by fluoroquinolones. Mutagenesis. - 5: 63–6.