ПРИМЕНЕНИЕ ГЕННОИНЖЕНЕРНЫХ ФЕРМЕНТОВ ДЛЯ ПЕРЕРАБОТКИ РАСТИТЕЛЬНОГО СЫРЬЯ В ПРОИЗВОДСТВЕ БИОТОПЛИВА

Main Article Content

Authors

К.Г. Ли

РГП «Республиканская коллекция микроорганизмов» КН МОН РК, г. Астана

Abstract

Целлюлоза из биоотходов является наиболее привлекательным субстратом для производства высококачественной продукции (например, топлива или пластмассы) путем ферментации. Тем не менее, традиционная переработка биомассы является экономически неэффективным многоступенчатым процессом. До сих пор нет микроорганизмов, способных выполнять ферментацию одноступенчато (консолидированный биопроцессинг; СВР). Основной технической проблемой экономически эффективного производства целлюлозного биотоплива является необходимость снизить затраты на ферменты, разрушающие стенки растительных клеток (PCDE), которые необходимы для производства сахара из биомассы. Разработано несколько конкурентоспособных недорогих технологий для производства PCDE в различных организмах-хозяевах, таких как кишечная палочка, Zymomonas mobilis и некоторые растения. Возможна гетерологичная экспрессия PCDE в рекомбинантной E. coli или Z. mobilis и успешный консолидированный биопроцессинг в этих микроорганизмах. Экспрессия in planta дает возможность упростить процесс производства фермента и переработки растительной биомассы и приводит к самопроизвольной деструкции клеточных стенок растений. Хотя будущее имеющихся в настоящее время технологий трудно предсказать, их полная реализация, скорее всего, вероятна через интеграцию существующих подходов с развитием прорывных технологий.

Keywords

целлюлазы, гетерологичная экспрессия, консолидированный биопроцессинг, биотопливо

Article Details

References

Lee S.K., Chou H., Ham T.S., Lee T.S., and Keasling J.D. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels // Current Opinion in Biotechnology. – 2008. – Vol.19, №6. – P. 556–563.

Sakuragi H., Kuroda K., Ueda M. Molecular breeding of advanced microorganisms for biofuel production // Journal of Biomedicine and Biotechnology. – 2011. – Vol. 2011. – 11 p.

Park J.M., Vinuselvi P., Kim T., Lee S.K. The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli / Gene. – 2012. – Vol. 504, №1. – P. 116–121.

Steen E.J., Kang Y., Bokinsky G. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass // Nature. – 2010. – Vol. 463, №7280. – P. 559–562.

Mazzoli R., Lamberti C., Pessione E. Engineering new metabolic capabilities in bacteria: lessons from recombinant cellulolytic strategies // Trends in Biotechnology. – 2012. – Vol. 30, №2. – P. 111–119.

Xu Q., Singh A., Himmel M.E. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose // Current Opinion in Biotechnology. – 2009. – Vol. 20, №3. – P. 364–371.

Dashtban M. et al. Fungal bioconversion of lignocellulosic residues; opportunities & perspectives // International Journal of Bioogical Sciences. – 2009. – Vol. 5. – P. 578–595.

Rincon M.T. et al. Abundance and diversity of dockerincontaining proteins in the fiber-degrading rumen bacterium Ruminococcus flavefaciens FD-1 // PLoS ONE. – 2010. – Vol. 5.

Maamar H. et al. Transcriptional analysis of the cip-cel gene cluster from Clostridium cellulolyticum // Journal of Bacteriology. – 2006. – Vol. 188. – P. 2614–2624.

Newcomb M. et al. Co-transcription of the celC gene cluster in Clostridium thermocellum // Applied Microbioogy and Biotechnoogy. – 2011. – Vol. 90. – P. 625–634.

Nataf Y. et al. Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors // Proceedings of National Academy of the Sciences of the U.S.A. – 2010. – Vol. 107. – P. 18646–18651.

Mingardon F. et al. The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824 // Applied and Environmental Microbiology. – 2011. – Vol. 77. – P. 2831–2838.

Wieczorek A.S., Martin V.J. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis // Microbial Cell Factories. – 2010. – Vol. 9. – P. 69.

Yeh C.M. et al. Extracellular expression of a functional recombinant Ganoderma lucidium immunomodulatory protein by Bacillus subtilis and Lactococcus lactis // Applied and Environmental Microbiology. – 2008. – Vol. 74. – P. 1039–1049.

Talarico L.A. et al. Construction and expression of an ethanol production operon in Gram-positive bacteria // Microbiology. – 2005. – Vol. 151. – P. 4023–4031.

Talarico L.A. et al. Production of the Gram-positive Sarcina ventriculi pyruvate decarboxylase in Escherichia coli // Microbiology. – 2001. – Vol.147. – P. 2425–2435.

Raj K.C. et al. Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase (pdc): comparison to bacterial homologues // Applied and Environmental Microbiology. – 2002. – Vol. 68. – P. 2869–2876.

Linger J.G. et al. Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis // Applied and Environmental Microbiology. – 2010. – Vol. 76. – P. 6360–6369.

Doi R.H., Kosugi A. Cellulosomes: plant-cell-walldegrading enzyme complexes // Nature Reviews Microbiology . – 2004. – Vol. 2, №7. - P. 541–551.

Park Y.W. and Yun H.D. Cloning of the Escherichia coli endo-1,4-D-glucanase gene and identification of its product // Molecular and General Genetics. – 1999. – Vol. 261, №2. – P. 236–241.

Shin H.D., Chen R.R. Extracellular recombinant protein production from an Escherichia coli lpp deletion mutant // Biotechnology and Bioengineering. – 2008. –Vol.101, №6. – P. 1288–1296.

Duan C.J., Feng J.X. Mining metagenomes for novel cellulase genes // Biotechnology Letters. – 2010. – Vol. 32, №12. – P.1765–1775.

Vinuselvi P., Lee S.K. Engineering Escherichia coli for efficient cellobiose utilization // Applied Microbiology and Biotechnology. – 2011. – Vol. 92, №1. – P. 125–132.

Piriya P.S. et al. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis // Biotechnology Research International. – 2012. – Vol. 2012. – 8 p.

Angov E. et al. Adjustment of codon usage frequencies by codon harmonization improves protein expression and folding // Methods in Molecular Biology. – 2011. – Vol.705. – P. 1–13.

Wilson D.B. Three microbial strategies for plant cell wall degradation // Annals of the New York Academy of Sciences. – 2008. - Vol. 1125. – P. 289–297.

Zhou S. et al. Enhancement of expression and apparent secretion of Erwinia chrysanthemi endoglucanase (encoded by celZ) in Escherichia coli B // Applied and Environmental Microbiology. – 1999. – Vol. 65, №6. – P. 2439–2445.

Okamoto T., Yamano S., Ikeaga H., Nakamura K. Cloning of the Acetobacter xylinum cellulase gene and its expression in Escherichia coli and Zymomonas mobilis // Applied Microbiology and Biotechnology. – 1994. – Vol. 42, №4. – P. 563–568.

Yanase H., Kato N., Tonomura K. Strain improvement of Zymomonas mobilis for ethanol production // Bioprocess technology. – 1994. – Vol. 19. – P. 723–739.

Gomord V. et al. Plant-specific glycosylation patterns in the context of therapeutic protein production // Plant Biotechnology Journal. – 2010. – Vol. 8, №5. – P. 564–587.

Ma L., Lucasik E., Gawehns F., Takken F.L. The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves // Methods in Molecular Biology. – 2012. - Vol. 835. – P. 61–74.

Kim S., Lee D.S., Choi I.S., Ahn S.J., Kim Y.H., Bae H.J. Arabidopsis thaliana Rubisco small subunit transit peptide increases the accumulation of Thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants // Transgenic Research. – 2010. – Vol. 19, №3. – P. 489–497.

Borkhardt B., Harholt J., Ulvskov P., Ahring B. K., Jørgensen B., Brinch-Pedersen H. Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases // Plant Biotechnology Journal. – 2010. – Vol. 8, №3. – P.363–374.

Harrison M.D., Geijskes J., Coleman H.D. et al. Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane // Plant Biotechnology Journal. – 2011. – Vol. 9, №8. – P. 884–896.

Hood E.E., Love R., Lane J. et al. Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed // Plant Biotechnology Journal. – 2007. – Vol. 5, №6. – P. 709–719.

Oraby H., Venkatesh B., Dale B. et al. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol // Transgenic Research. – 2007. – Vol. 16, №6. – P. 739–749.

Sun Y., Cheng J.J., Himmel M.E. et al. Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627 // Bioresource Technology. – 2007. – Vol. 98, №15. - P. 2866–2872.

Verma D., Kanagaraj A., Jin S., Singh N.D., Kolattukudy P.E., Daniell H. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars // Plant Biotechnology Journal. – 2010. – Vol. 8, №3. - P. 332–350.

Alper H., Stephanopoulos G. Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? // Nature Reviews Microbiology. – 2009. – Vol. 7, №10. – P. 715–723.

Jiang X., Zhou X., Jiang W., Gao X., Li W. Expressions of thermostable bacterial cellulases in tobacco plant // Biotechnology Letters. – 2011. – Vol. 33, №9. – P. 1797–1803.

Agrawal P., Verma D., Daniell H. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis // PloS ONE. – 2011. – Vol. 6, №12.