Secretory Expression Of The Glucan Endo-1,3-Beta-D-Glucosidase Gene Of Secale Cereale In Yeast Pichia Pastoris

Main Article Content

Authors

M. Saginova

National Center for Biotechnology, 13/5 Kоrgalzhyn road, Nur-Sultan, 010000, Kazakhstan
L.N.Gumilyov Eurasion National University, Satpayev str., 2, Nur-Sultan, 010000, Kazakhstan

Zh. Akishev

National Center for Biotechnology, 13/5 Kоrgalzhyn road, Nur-Sultan, 010000, Kazakhstan

A. Sarsen

National Center for Biotechnology, 13/5 Kоrgalzhyn road, Nur-Sultan, 010000, Kazakhstan
L.N.Gumilyov Eurasion National University, Satpayev str., 2, Nur-Sultan, 010000, Kazakhstan

A. Kiribayeva

National Center for Biotechnology, 13/5 Kоrgalzhyn road, Nur-Sultan, 010000, Kazakhstan

B. Khassenov

National Center for Biotechnology, 13/5 Kоrgalzhyn road, Nur-Sultan, 010000, Kazakhstan

Abstract

For survival in cold conditions, many organisms have developed unique adaptive mechanisms based on the synthesis of antifreeze proteins, peptides and glycoproteins that prevent ice formation at negative temperatures. These molecules tend to bind ice crystals and lower the freezing point of the solution without the formation of large crystals. Antifreeze proteins (AFP) were found in almost all types of living organisms, including insects, fungus, yeasts, bacteria and plants. The gene of antifreeze protein - glucan endo-1,3-beta-D-glucosidase (ScGlu-3) from Secale cereale was cloned into shuttle vector pPICZαA. The competent cells of yeast Pichia pastoris GS115 were transformed and the producer strain was obtained, which secreted of ScGlu-3 into the culture medium using 3% methanol as the only carbon source. It was found by western blotting that the maximum accumulation of ScGlu-3 in the culture occurs after 48 hours of fermentation on a medium with methanol. Established that rScGlu-3 precipitates at 50-65% of ammonium sulfate.

Keywords

antifreeze protein, strain, peptides, Secale cereale, gene, shuttle vector, Pichia pastoris, ammonium sulfate

Article Details

References

Barrett J. Thermal hysteresis proteins. Int J Biochem Cell Biol, 2001, vol. 33, no. 2, pp. 105-17. http://doi: 10.1016/s1357-2725(00)00083-2.

DeVries A.L., Wohlschlag D.E. Freezing resistance in some Antarctic fishes. Science, 1969, vol. 163, no. 3871, pp. 1073. http://doi:10.1126/science. 163.3871.1073.

DeVries A.L. Glycoproteins as biological antifreeze agents in antarctic fishes. Science, 1971, vol. 172, no. 3988, pp. 1152. http://doi: 10.1126/science. 172.3988.1152.

Duman J.G., Devries A.L. Freezing resistance in winter flounder Pseudopleuronectes americanus. Nature, 1974, vol. 247, no. 5438, pp. 237–238. Crossref.

Venketesh S., Dayananda C. Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol, 2008, vol. 28, no. 1, pp. 57-82. http://doi: 10.1080/07388550801891152.

Cheung R.F., Ng T.B., Wong J. H. Antifreeze Proteins from Diverse Organisms and their Applications: An Overview. Curr Protein Pept Sci, 2017, vol. 18, no. 3, pp. 262-283. http://doi: 10.2174/1389203717666161013095027.

Graether S.P., Kuiper M.J., Gagne S.M., Walker V.K., Jia Z., Sykes B.D., Davies P. L. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature, 2000, vol. 406, no. 6793, pp. 325-8. http://doi: 10.1038/35018610.

Leinala E.K., Davies P.L., Jia Z. Crystal structure of beta-helical antifreeze protein points to a general ice binding model. Structure, 2002 May, vol.10, no. 5, pp. 619-27. http://doi: 10.1016/s0969-2126(02)00745-1.

Walters K.R Jr., Serianni A.S., Sformo T., Barnes B.M., Duman J.G. A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides. Proc Natl Acad Sci USA, 2009, vol. 106, no. 48, pp. 20210. http://doi: 10.1073/pnas.0909872106.

Cheng J., Hanada Y., Miura A., Tsuda S., Kondo H. Hydrophobic ice-binding sites confer hyperactivity of an antifreeze protein from a snow mold fungus. Biochem J, 2016, vol. 473, no. 21, pp. 4011-4026. http://doi: 10.1042/BCJ20160543.

Lee J.H., Park A.K., Do H., Park K.S., Moh S.H., Chi Y.M., Kim H.J. Structural basis for antifreeze activity of ice-binding protein from arctic yeast. J Biol Chem, 2012, vol. 287, no. 14, pp. 11460-8. http://doi: 10.1074/jbc.M111.331 835.

Hashim N.H., Bharudin I., Nguong D.L., Higa S., Bakar F.D., Nathan S., Rabu A., Kawahara H., Illias R.M., Najimudin N., Mahadi N.M., Murad A.M. Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles, 2013, vol. 17, no. 1, pp. 63-73. http://doi: 10.1007/s00792-012-0494-4.

Lee J.K., Park K.S., Park S., Park H., Song Y.H., Kang S.H., Kim H.J. An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology, 2010, vol. 60, no. 2, pp. 222-8. http://doi: 10.1016/j.cryobiol.2010. 01.002.

Raymond J.A., Christner B.C., Schuster S.C. A bacterial ice-binding protein from the Vostok ice core. Extremophiles, 2008, vol. 12, no. 5, pp.713-7. http://doi: 10.1007/s00792-008-0178-2.

Garnham C.P., Campbell R.L., Davies P.L. Anchored clathrate waters bind antifreeze proteins to ice. Proceedings of the National Academy of Sciences USA, 2011, vol. 108, no. 18, pp. 7363. http://doi: 10.1073/pnas.1100429108.

Garnham C.P., Gilbert J.A., Hartman C.P., Campbell R.L., Laybourn-Parry J., Davies P.L. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold. Biochem J, 2008, vol. 411, no. 1, pp. 171-80. http://doi: 10.1042/BJ20071372.

Middleton A.J., Brown A.M., Davies P.L., Walker V.K. Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett, 2009, vol. 583, no.4, pp. 815-9. http://doi: 10.1016/j.febslet.2009.01.035.

Middleton A.J., Marshall C.B., Faucher F., Bar-Dolev M., Braslavsky I., Campbell R.L., Walker V.K., Davies P.L.Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol, 2012, vol. 416, no. 5, pp. 713-24. http://doi: 10.1016/j.jmb.2012.01.032.

Graham L.A., Boddington M.E., Holmstrup M., Davies P.L. Antifreeze protein complements cryoprotective dehydration in the freeze-avoiding springtail Megaphorura arctica. Sci Rep, 2020, vol. 10, no.1, pp. 3047. http://doi: 10.1038/ s41598-020-60060-z.

Pentelute B.L., Gates Z.P., Tereshko V., Dashnau J.L., Vanderkooi J.M., Kossiakoff A.A., Kent S.B. X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. J Am Chem Soc, 2008, vol. 130, no. 30, pp. 9695-701. http://doi: 10.1021/ja8013538.

Kuduk S.D., Schwarz J.B., Chen X.-T., Glunz P.W., Sames D., Ragupathi G., Livingston P.O., Danishefsky S.J. Synthetic and Immunological Studies on Clustered Modes of Mucin-Related Tn and TF O-Linked Antigens: The Preparation of a Glycopeptide-Based Vaccine for Clinical Trials against Prostate Cancer. Journal of the American Chemical Society, 1998, vol. 120, no. 48, pp. http:// 12474-12485. doi:10.1002/chin.199917232.

Robles V., Valcarce D.G., Riesco M.F. The Use of Antifreeze Proteins in the Cryopreservation of Gametes and Embryos. Biomolecules, 2019, vol. 9, no. 5, pp. 181. http://doi: 10.3390/biom9050181.

Fuller B.J. Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters, 2004, vol. 25, no. 6, pp. 375-88. Crossref. 1017/CBO978051173 0207.005.

Wang J.H. A comprehensive evaluation of the effects and mechanisms of antifreeze proteins during low-temperature preservation. Cryobiology, 2000, vol. 41, no. 1, pp. 1-9. http://doi: 10.1006/cryo.2000.2265.

Kaleda A., Tsanev R., Klesment T., Vilu R., Laos K. Ice cream structure modification by ice-binding proteins. Food Chem, 2018, vol. 246, pp. 164-171. http://doi: 10.1016/j.foodchem.2017.10.152.

Griffith M., Yaish M.W. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci, 2004, vol. 9, no. 8, pp. 399-405. http://doi: 10.1016/j.tplants.2004.06.007.

John U.P., Polotnianka R.M., Sivakumaran K.A., Chew O., Mackin L., Kuiper M.J., Talbot J.P., Nugent G.D., Mautord J., Schrauf G.E., Spangenberg G.C. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant Cell Environ, 2009, vol. 32, no. 4, pp. 336-48. http://doi: 10.1111/j.1365-3040.2008. 01925.x.

Lauersen K.J., Brown A., Middleton A., Davies P.L., Walker V.K. Expression and characterization of an antifreeze protein from the perennial rye grass, Lolium perenne. Cryobiology, 2011, vol. 62, no. 3, pp. 194-201. http://doi: 10.1016/j.cryobiol.2011.03.003.

Tremblay K., Ouellet F., Fournier J., Danyluk J., Sarhan F. Molecular characterization and origin of novel bipartite cold-regulated ice recrystallization inhibition proteins from cereals. Plant Cell Physiol, 2005, vol. 46, no. 6, pp. 884-91. http://doi: 10.1093/pcp/pci093.

Yaish M.W., Doxey A.C., McConkey B.J., Moffatt B.A., Griffith M. Cold-active winter rye glucanases with ice-binding capacity. Plant Physiol, 2006, vol. 141, no. 4, pp. 1459-72. http://doi: 10.1104/pp.106.081935.

Van den Ent F., Lowe J. RF cloning: a restriction-free method for inserting target genes into plasmids. J Biochem Biophys Methods, 2006, vol. 67, no. 1, pp. 67-74. http://doi: 10.1016/j.jbbm.2005.12.008.

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, vol. 227, no. 5259, pp. 680-5. http://doi: 10.1038/227680a0.

Wood E.J. Molecular Cloning. A Laboratory Manual. Biochemical Education, 1983, vol. 11, no. 2, pp. 82.

Ellis S.B., Brust P.F., Koutz P.J., Waters A.F., Harpold M.M., Gingeras T. R. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol, 1985, vol. 5, no. 5, pp. 1111-21. http://doi: 10.1128/mcb.5.5.1111.

Koutz P., Davis G.R., Stillman C., Barringer K., Cregg J., Thill G. Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast,1989, vol. 5, no. 3, pp. 167-77. http://doi: 10.1002/yea.320050306.

Cereghino J.L., Cregg J.M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev, 2000, vol. 24, no. 1, pp. 45-66. http://doi: 10.1111/j.1574-6976.2000.tb00532.x.

Liu M.Q., Liu G.F. Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Protein Expr Purif, 2008, vol. 57, no. 2, pp. 101-7. http://doi: 10.1016/j.pep. 2007.10.020.

Kwon W.T., Lee W.S., Park P.J., Park T.K., Kang H. Protective immunity of Pichia pastoris-expressed recombinant envelope protein of Japanese encephalitis virus. J Microbiol Biotechnol, 2012, vol. 22, no. 11, pp. 1580-7. http://doi: 10.4014/jmb.1205.05047.

Yao M., Zhang J., Wang X. High-level secretion of human bikunin from recombinant Pichia pastoris. Lett Appl Microbiol, 2015, vol. 61, no. 4, pp.374-80. http://doi: 10.1111/lam.12470.