СОСТОЯНИЕ ПРОБЛЕМЫ УСТОЙЧИВОСТИ РАСТЕНИЙ К ГРИБКОВЫМ ПАТОГЕНАМ НА ПРИМЕРЕ ПРЕДСТАВИТЕЛЕЙ РОДА VITIS

Main Article Content

Authors

Н.А. Рябушкина

РГП «Институт биологии и биотехнологии растений»,  г. Алматы

Abstract

В обзоре приведено современное представление основ иммунитета растений, основывающееся на двух составляющих: базовой устойчивости, основанной на реакциях растения на общие для многих микроорганизмов вещества-элиситоры, и устойчивости, выработанной на эффекторы патогенов. Большинство культивируемых сортов винограда наиболее чувствительны к патогенам оомицету Plasmopara viticola, аскомицету Erysiphe necator, аскомицету Botrytis cinerea, наносящим серьезный экономический ущерб. С использованием молекулярно-генетических подходов выявлен ряд генов устойчивости к данным патогенам у североамериканских и азиатских представителей рода Vitis. Созданы генетические карты и молекулярные маркеры, позволяющие локализовать гены устойчивости в группах сцепления. На ряде примеров описана последовательность иммунных реакций, передачи сигналов, экспрессии ряда факторов транскрипции, синтеза гормонов, ферментов и фитоалексинов винограда на инокуляцию соответствующих патогенов. Эти подходы являются основой для выявления новых кандидатов генов с целью их пирамидирования для пролонгирования устойчивости V. vinifera к патогенам. Исследователи разрабатывают также альтернативную стратегию устойчивости к патогенам посредством восстановления базовой устойчивости.

Keywords

иммунная система растений, Vitis, ложная мучнистая роса, мучнистая роса, серая плесень, гены устойчивости

Article Details

References

Jones J.D.G., Dangl J.L. The plant immune system // Nature. – 2006. – Vol. 444. – P. 323-329.

Boller Th. and Felix G. A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors // Annu. Rev. Plant Biol. – 2009. – Vol. 60. – P. 379-406.

Dodds P.N. and Rathjen J.P. Plant immunity: towards an integrated view of plant–pathogen interactions // Nature Reviews Genetics. – 2010. – Vol. 11. – P. 539-548.

Katagiri F. and Tsuda K. Understanding the Plant Immune System // MPMI. – 2010. – Vol. 23. – P. 1531-1536.

Chisholm S.T., Coaker G., Day B. and Staskawicz. B.J. Host-Microbe Interactions: Shaping the Evolution of the Plant Immune Response// Cell. – 2006. – Vol. 124. – P. 803-814.

Gomez-Gomez L., Boller T. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis // Mol. Cell. – 2000. – Vol. 5. – P. 1003-1011.

Zipfel C. Pattern-recognition receptors in plant innate immunity // Current Opinion in Immunology. – 2008. – Vol. 20. – P. 10-16.

Tsuda K., Sato M., Stoddard T., Glazebrook J., Katagiri F. Network Properties of Robust Immunity in Plants // PLoS Genetics. – 2009. – Vol. 5. – P. 1-16.

Lecourieux D., Ranjeva R., Pugin A. Calcium in plant defence-signalling pathways // New Phytol. – 2006. – Vol. 171. – P. 249-269.

Suarez-Rodriguez M.C., Petersen M., Mundy J. Mitogen-activated protein kinase signalling in plants // Annu. Rev. Plant. Biol. – 2010. – Vol. 61. – P. 621-649.

Koornneef A. and Pieterse C.M.J. Cross Talk in Defense Signaling // Plant Physiol. – 2008. – Vol. 146. – P. 839-844.

Bai J., Pennill L.A., Ning J., Lee S.W., Ramalingam J., Webb C.A., Zhao B., Sun Q., Nelson J.C., Leach J.E., Hulbert S.H. Diversity in leucine in nucleotide binding site-Leucine-rich repeat genes in cereals // Genome Res. – 2002. – Vol. 12. – P. 1871-1884.

Belkhadir Y., Subramaniam R., Dangl J.L. Plant disease resistance protein signaling: NBS–LRR proteins and their partners // Current Opinion in Plant Biology. – 2004. – Vol. 7. – P. 391-399.

Peressotti E., Wiedemann-Merdinoglu S., Delmotte F., Bellin D., Di Gaspero G., Testolin R., Merdinoglu D., Mestre P. Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety // BMC Plant Biology. – 2010. – Vol. 10:147.

Boyd L.A. Perspective Can the durability of resistance be predicted? // J Sci Food Agric. – 2006. – Vol. 86. – P. 2523-2526.

Vlot C.A, Klessig D.F., Park S-W. Systemic acquired resistance: the elusive signal(s) // Current Opinion in Plant Biology. – 2008. – Vol. 11. – P. 436-442.

Pieterse C.M.J., Dicke M. Plant interactions with microbes and insects: from molecular mechanisms to ecology // Trends Plant Sci. – 2007. – Vol. 12. – P. 564-569.

Mathys J., De Cremer K., TimmermansP., Van Kerckhove S., Lievens B., VanhaeckeM., Cammue B.P.A., De Coninck B. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatumT382 against Botrytis cinerea infection // Frontiers in Plant Science. – 2012. – Vol. 3. – P. 1-25.

Conrath U. Molecular aspects of defence priming // Trends in Plant Science. – 2011. – Vol. 16. – P. 524-531.

Pastora V., Lunab E., Mauch-Manic B., Tonb J., Florsa V. Primed plants do not forget // Environmental and Experimental Botany. – Available online 5 March, 2012.

Gomès E.E. and Coutos-Thévenot P. Molecular aspects of grapevine-pathogenic fungi interactions // In Roubelakis-Angelakis K.A. (ed.), Grapevine Molecular Physiology & Biotechnology. Springer Science+Business Media B.V. 2nd edn. – 2009. – P. 407-428.

Jeandet P., Douillet-Breuil A.C., Bessis R., Debord S., Sbaghi M., Adrian M. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism // Journal of Agricultural and Food Chemistry. – 2002. – Vol. 50. – P. 2731-2741.

FINAL REPORT “Study on the Use of the Varieties of Interspecific Vines”, EU 16thJuly, 2003.

Hofmann S., Di Gaspero G., Kovács L., Howard S., Kiss E., Galbács Z., Testolin R., Kozma P. Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth // Theor Appl Genet. – 2008. – Vol. 116. – P. 427-438.

This P., Lacombe T., Thomas M. Historical origin and genetic diversity of wine grapes // Trends Genet. – 2006. – Vol. 22. – P. 511-519.

Schmitt A., Rex M., Ebert S., Friedt W., Töpfer R., Zyprian E. Marker Development for Important Grapevine Traits by Genetic Diversity Studies and Investigation of Differential Gene Expression // In: S. Delrot et al. (eds.), Methodologies and Results in Grapevine Research, Springer Science+Business Media B. – 2010. – Ch. 27. – P. 375-487.

Eibach R., Hausmann L., Töpfer R. Marker assisted selection (MAS) as a new tool for developing high quality cultivars with sustainable resistance. Federal Research Centre for Cultivated Plants. Julius Kuehn-Institute Institute for Grapevine Breeding Geilweilerhof. - 2010. - 6 pp.

Velasco R. et al. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety // PLoS ONE. – 2007. – Vol. 12. – P. 1-18.

Welter L.J., Göktürk-Baydar N., Akkurt M., Maul E., Eibach R., Töpfer R., Zyprian E.M. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L) // Mol Breeding. – 2007. – Vol. 20. – P. 359-374.

Di Gaspero G., Cipriani G. Resistance gene analogs are candidate markers for disease-resistance genes in grape (Vitis spp.) // Theor Appl Genet. – 2002. – Vol. 106. – P. 163-172.

Merdinoglu D., Wiedemann-Merdinoglu S., Coste P., Dumas V., Haetty A., Butterlin G., Greif C. Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia // Acta Hort. – 2003. – Vol. 603. – P. 451-456.

Kortekamp A., Welter L., Vogt S., Knoll A., Schwander F., Töpfer R., Zyprian E. Identification, isolation and characterization of a CC-NBS-LRR candidate disease resistance gene family in grapevine // Mol Breeding. – 2008. – Vol. 22. – P. 421-432.

Polesani M., Bortesi L., Ferrarini A., Zamboni A., Fasoli M., Zadra C., Lovato A., Pezzotti M., Delledonne M., Polverari A. General and species-specific transcriptional responses to downy mildew infection in a susceptible Vitis vinifera and a resistant V.riparia grapevine species BMC Genomics. – 2010. – 11:117.

Pandey S.P., Somssich I.E. The role of WRKY transcription factors in plant immunity // Plant Physiol. – 2009. – Vol. 150. – P. 1648-1655.

Bellin D., Peressotti E., Merdinoglu D., Wiedemann-Merdinoglu S., Adam-Blondon A.-F., Cipriani G., Morgante M., Testolin R., Di Gaspero G. Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a major dominant gene causing localized necrosis at the infection site // Theor Appl Genet. – 2009. – Vol. 120. – P. 163-176.

Kast W.K., Stark-Urnau M., Seidel M., Gemmrich A.R. Inter-isolate variation of virulence of Plasmopara viticola on resistant vine varieties // Bull OILB/SROP. – 2001. – Vol. 24. – P. 45–49.

Casagrande K., Falginella L., Castellarin S.D., Testolin R., Di Gaspero G. Defence responses in Rpv3-dependent resistance to grapevine downy mildew // Planta. – 2011. – Vol. 234. – P. 1097-1109.

Di Gaspero G., Copetti D., Coleman C., Castellarin S.D., Eibach R., Kozma P., Lacombe T., Gambetta G., Zvyagin A., Cindri P., Kovács L., Morgante M., Testolin R. Selective sweep at the Rpv3 locus during grapevine breeding for downy mildew resistance // Theor Appl Genet. – 2012. – Vol. 124. – P. 277-286.

Blasi P., Blanc S., Wiedemann-Merdinoglu S., Prado E., Rühl E.H., Mestre P., Merdinoglu D. Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew // Theor Appl Genet. – 2011. – V. 123. – P. 43-53.

Figueiredo A., Monteiro F., Fortes A.M., Bonow-Rex M., Zyprian E., Sousa L., Pais M.S. Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine // Funct Integr Genomics. – 2012. – Vol. 12. – P. 379-386.

Schwander F., Eibach R., Fechter I., Hausmann L., Zyprian E., Töpfer R. Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine // Theor Appl Genet. – 2012. – Vol. 124. – P. 163–176.

Yu Y., Zhang Y., Yin L., Lu J. The mode of host resistance to Plasmopara viticola infection of grapevines (Vitis L.). Phytopathology. – 2012. - Aug 9.

Hu¨ckelhoven R. and Panstruga R. Cell biology of the plant–powdery mildew interaction // Current Opinion in Plant Biology. – 2011. – Vol. 14. – P. 738-746.

Ramming D.W., Gabler F., Smilanick J., Cadle-Davidson M., Barba P., Mahanil S., Cadle-Davidson L. A Single Dominant Locus, Ren4, Confers Rapid Non-Race-Specific Resistance to Grapevine Powdery Mildew // Phytopathology. – 2011. –Vol. 101. – P. 502-508.

Pauquet J., Bouquet A., This P., Adam-Blondon A.F. Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection // Theor Appl Genet. – 2001. – Vol. 103. – P. 1201-1210.

Olmo H.P. The potential role of (Vinifera•Rotundifolia) hybrids in grape variety improvement // Experientia. – 1986. – Vol. 42. – P. 921-926.

Barker C.L., Donald T., Pauquet J., Ratnaparkhe M.B., Bouquet A., Adam-Blondon A-F., Thomas M.R., Dry I. Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library // Theor Appl Genet. – 2005. – Vol. 111. – P. 370-377.

Dry I.B., Feechan A., Anderson C., Jermakow A.M., Bouquet A., Adam-Blondon, A.F., Thomas M.R. Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew. Aust. J. Grape Wine Res. – 2010. – Vol. 16. – P.94-105.

Coleman C., Copetti D., Cipriani G., Hoffmann S., Kozma P., Kovács L., Morgante M., Testolin R., Di Gaspero G. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines // BMC Genetics. – 2009. – Vol. 10. – P. 1-20.

Bent A.F and Mackey D. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions // Annual Review of Phytopathology. – 2007. – Vol. 45. – P. 399-436.

Wan Y.Z., Schwaninger H., He P.C., Wang Y.J. Comparison of resistance to powdery mildew and downy mildew in Chinese wild grapes // Vitis. – 2007. – Vol. 46. – P. 132-136.

Olien W.C. The muscadine grape: Botany, viticulture, history and current industry // Hort Sci. – 1990. – Vol. 25. – P. 732-739.

Blanc S., Wiedemann-Merdinoglu S., Dumas V., Mestre P., Merdinoglu D. A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew // Theor Appl Genet. Published on line 03 August, 2012.

Le Henanff G., Heitz T., Mestre P., Mutterer J., Walter B., Chong J. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of pathogenesis-related gene expression // BMC Plant Biol. – 2009. – Vol. 9:54. – P.1-14.

Le Henanff G., Farine S., Kieffer-Mazet F., Miclot A-S., Heitz T., Mestre P., Bertsch C., Chong J. Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew // Planta. – 2011. – Vol. 234. – P. 405-417.

Spoel S.H. and Dong X. How do plants achieve immunity? Defence without specialized immune cells // Nature Reviews Immunology. – 2012. – Vol. 12. – P. 89-100.

Fung R.W.M., Gonzalo M., Fekete C., Kovacs L.G., He Y., Marsh E., McIntyre L.M., Schachtman D.P., Qiu W. Powdery Mildew Induces Defense-Oriented Reprogramming of the Transcriptome in a Susceptible But Not in a Resistant Grapevine // Plant Physiology. – 2008. – V. 146. – P. 236-249.

Zhu Z., Shi J., Cao J., He M., Wang Y. VpWRKY3, a biotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata // Plant Cell Rep. Published on line July, 2012.

Zhang H., Jin J.P., Tang L.A., Zhao Y., Gu X.C., Gao G., Luo J.C. PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database // Nucleic Acids Res. – 2011. – Vol. 39. – D1114–D1117.

Gabler F.M., Smilanick J.L., Mansour M., Ramming D.W., Mackey B.E. Correlations of Morphological, Anatomical, and Chemical Features of Grape Berries with Resistance to Botrytis cinerea // Phytopathology. – 2003. – Vol. 93. – P. 1263-1273.

Laquitaine L., Gomès E., François J., Marchive C., Pascal S., Hamdi S., Atanassova R., Delrot S., Coutos-Thévenot P. Molecular basis of ergosterol-induced protection of grape against Botrytis cinerea: Induction of type I LTP promoter activity, WRKY, and stilbene synthase gene expression // MPMI. – 2006. – Vol. 19. – P. 1103-1112.

Varnier A.L., Sanchez L., Vatsa P., Boudesocque L., Garcia-Brugger A., Rabenoelina F., Sorokin A., Renault J.H., Kauffmann S., Pugin A., Clement C., Baillieul F., Dorey S. Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine // Plant Cell Environ. – 2009. – Vol. 32. – P. 178-193.

Verhagen B.W., Trotel-Aziz P., Couderchet M., Höfte M., Aziz A. Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine // J Exp Bot. – 2010. – Vol. 61. – P. 249-260.

Verhagen B., Trotel-Aziz P., Jeandet P., Baillieul .F, Aziz A. Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin production // Phytopathology. – 2011. – Vol. 101. – P. 768-777.