EXPRESSION, PURIFICATION AND BIOCHEMICAL CHARACTERIZATION OF RECOMBINANT PHOSPHOHYDROLASE APPA IN ESCHERICHIA COLI

Main Article Content

Authors

S. Abeldenov

National Center for Biotechnology, Valikhanov str. 13/1, Astana, 010000, Kazakhstan

S. Kirillov

National Center for Biotechnology, Valikhanov str. 13/1, Astana, 010000, Kazakhstan

A. Nurmagambetova

National Center for Biotechnology, Valikhanov str. 13/1, Astana, 010000, Kazakhstan

A. Kiribayeva

National Center for Biotechnology, Valikhanov str. 13/1, Astana, 010000, Kazakhstan

D. Silayev

National Center for Biotechnology, Valikhanov str. 13/1, Astana, 010000, Kazakhstan

B. Khassenov

National Center for Biotechnology, Valikhanov str. 13/1, Astana, 010000, Kazakhstan

Abstract

Development of fodder and increase of feed efficiency is an urgent task for livestock and poultry in Kazakhstan. An important characteristic of feed is the content of bioavailable phosphorus. Traditional source of phosphorus in feed is the mineral phosphate. New and cost-effective way to improve the quality of feed is to mobilize bound phosphate from indigestible plant components.

Development of pig and poultry production has increased the cost of traditional sources of organic phosphorus feed (fish and meat and bone meal). At the same time, the limitations of the world's reserves of phosphorus-containing minerals will lead to the progressive increase of the price of animal feed with mineral additives.

Relatively new and cost-effective way to address the shortage of bioavailable phosphorus for livestock, poultry and fish farming is the use of feed additives - phytase. Phytase - a group of enzymes phosphohydrolases cleaving the ester bond in the molecule of phytic acid and releasing one or more residues of phosphoric acid.

In this work gene appA of Escherichia coli BL21 (DE3) was cloned into plasmid vector under T7 promoter control and was expressed resulting in high purity recombinant phytase AppA. Optimal cultivation temperature and induction conditions, cell lysis conditions, purification conditions of recombinant enzyme AppA were determined. Phytase activity assay was performed for recombinant enzyme.

Work has absolute novelty for the biotechnology industry in Kazakhstan.

Keywords

phytase, polymerase chain reaction, Escherichia coli, recombinant protein

Article Details

References

Tucker G., Woods L. Enzymes in Food Processing. 2nd ed. Glasgow, Academic and Professional, 1995, 319 р.

Godfrey T., West S. Industrial Enzymology – 2nd ed. Basingstoke: Macmillan Press and New York: Stockton Press, 1996, 609 р.

Rabinovich M., Melnik M., Bolobova A. Cellulose of microorganisms. Applied biochemistry and molecular biology, 2002, vol. 38, no. 4, pp. 355-373.

Haefner S., Knietsch A., Scholten E., Braun J., Lohscheidt M., Zelder O. Biotechnological production and applications of phytases. Appl Microbiol Biotechnol., 2005, vol. 68, no. 5, pp. 588-597. doi: 16041577.

Miksch G., Kleist S., Friehs K., Flaschel E. Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors. Appl Microbiol Biotechnol., 2002, vol. 59, pp. 685–694. doi: 12226725.

Vohra A., Satyanarayana T. Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol., 2003, vol. 23, no. 1, pp. 29-60. doi:12693443.

Polaina J., MacCabe A.P. Industrial Enzymes: Structure, Function and Applications. Springer, 2007, 642 р.

Yao M.Z., Zhang Y.H., Lu W.L., Hu M.Q., Wang W., Liang A.H. Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol., 2012, vol. 112, no. 1, pp. 1-14. doi: 22017627.

Xin Gen Lei, Jesus M. Porres. Phytase enzymology, applications, and biotechnology. Biotechnology Letters, 2003, vol. 25, pp. 1787-1794. doi: 14677699.

Phillippy B.Q., Mullaney E.J. Expression of an Aspergillus niger Phytase (phyA) in Escherichia coli. J Agric Food Chem., 1997, vol. 45, pp. 3337-3342. Available at:Crossref.

Pandee P., Summpunn P., Wiyakrutta S., Isarangkul D., Meevootisom V.A. Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. J Microbiol., 2011, vol. 49, no. 2, pp. 257-64. doi: 21538247.

Mayer A.F., Hellmuth K., Schlieker H., Lopez-Ulibarri R., Oertel S, Dahlems U., Strasser A. van Loop AP. An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng., 1999, vol. 63, pp. 373-381. doi: 10099617.

Kerovuo J., Tynkkynen S. Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett Appl Microbiol., 2000, vol. 30, no. 4, pp. 325-329. doi: 10792656.

Pengjun S., Huoqing H., Wang Y., Huiying Luo, Bo Wu, Kun Meng, Peilong Yang, Bin Yao A novel phytase gene appA from Buttiauxella sp. GC21 isolated from grass carp intestine. Aquaculture, 2008, vol. 275, no. 1-4, pp. 70-75. Available at:Crossref.

Chen C.C., Wu P.H., Huang C.T., Cheng K.J. A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb Technol., 2004, vol. 35, pp. 315-320. Available at:Crossref.

Rodriguez E., Han Y., Lei X.G. Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun., 1999, vol. 257, no. 1, pp. 117-123. doi: 10092520.

Stahl C.H., Wilson D.B., Lei X.G. Comparison of extracellular Escherichia coli AppA phytases expressed in Streptomyces lividans and Pichia pastoris. Biotechnol Lett., 2013, vol. 25, no. 10, pp. 827-831. doi: 12882015.

Yao M.Z., Wang X., Wang W., Fu Y.J., Liang AH. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnol Lett., 2013, vol. 35, no. 10, pp. 1669-1676. doi: 23794051.

Fei B., Xu H., Zhang F., Li X., Ma S., Cao Y., Xie J., Qiao D., Cao Y. Relationship between Escherichia coli AppA phytase's thermostability and salt bridges. J Biosci Bioeng., 2013, vol. 115, no. 6, pp. 623-627. doi: 23333035.

Gerlach R., Pop O., Müller J.P. Tat dependent export of E. coli phytase AppA by using the PhoD-specific transport system of Bacillus subtilis. J Basic Microbiol., 2004, vol. 44, no. 5, pp. 351-359. doi: 15378526.

Berkmen M., Boyd D., Beckwith J. The nonconsecutive disulfide bond of Escherichia coli phytase (AppA) renders it dependent on the protein-disulfide isomerase, DsbC. J Biol Chem., 2005, vol. 280, no. 12, pp. 11387-11394. doi: 15642731.

Maniatis T., Fritsch E.E., Sambrook J. Molecular cloning. A laboratory manual. New York, Cold Spring Harbor Laboratory, 1982, 545 p.

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, vol. 227, pp. 680-685. doi: 5432063.

Bradford M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, vol. 72, pp. 248-254. doi: 942051.

Fei B., Xu H., Cao Y., Ma S., Guo H., Song T., Qiao D., Cao Y. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. Journal of Industrial Microbiology & Biotechnology, 2013, vol. 40, Issue 5, pp. 457-464. doi: 23494709.

Fei B., Cao Y., Xu H., Li X., Song T., Fei Z., Qiao D., Cao Y. AppA C-terminal plays an important role in its thermostability in Escherichia coli. Curr Microbiol., 2013, vol. 66, issue 4, pp. 374-378. Available at: Crossref.