TRANSGENIC TOBACCO PLANTS EXPRESSING GENE EcCspA TEND TO BE COLD RESISTANT

Main Article Content

Authors

A.S. Nizkorodova

Institute of Molecular Biology and Biochemistry named after Aytchozhin M.A., Science Committee of Ministry of Education and Science, 86 Dosmuchamedova str., Almaty, 050012, Kazakhstan

B.K. Iskakov

Institute of Molecular Biology and Biochemistry named after Aytchozhin M.A., Science Committee of Ministry of Education and Science, 86 Dosmuchamedova str., Almaty, 050012, Kazakhstan

Abstract

One of the most promising directions in creation of transgenic cold resistant plants is constitutive expression of transgenic RNA-chaperons. RNA-chaperons are proteins that bind nucleic acids (single stranded RNA and DNA) and destabilize their secondary structures which are formed by the decrease of temperature. Cold-shock proteins (CSP) are RNA-chaperons which present in all living organisms. The main cold-shock protein of E. coli CSPA is consist of 70 amino acids and binds single stranded RNAs and DNAs nonspecifically. We have obtained several lines of transgenic tobacco Nicotiana tabacum var. Samsun constitutively expressing protein EcCSPA in cytoplasm. There were nine transgenic tobacco lines carrying transgen EcCspA (marked as “A” with number) and three transgenic lines carrying transgen EcCspA which had 5’-untranslated region (UTR) of potato virus Y upstream (marked as “YA” with number). 5’-UTR of potato virus Y is well known translational enhancer; we used it for expression enhancement of goal protein in transgenic plants. We explored tolerance of transgenic plants to chilling and freezing. Three transgenic lines demonstrated 100% survival under the conditions of cold shock (lines A-20, YA-17 and YA-20). Two of transgenic lines namely YA-20 and A-27 showed statistically valid increase in raw weight of plants green part after the cold shock. The raw weight gain was 30% (YA-20) and 57% (A-27) in compare with control plants. Thus, we constant economical expediency of creation of cold-resistant agricultural plants transgenic by EcCspA.

Keywords

cold shock proteins (CSP), EcCSPA, transgenic plants, protein expression, cold resistance

Article Details

References

Sanghera G.S., Wani S.H., Hussain W., Singh N.B. Engineering cold stress tolerance in crop plants. Current Genomics, 2011, vol. 12, pp. 30-43.

Yamori W., Noguchi K., Hikosaka K., Terashima I. Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiology, 2010, vol. 152, рр. 388-399.

Huang L., Ye Zh., Bell R.W., Dell B. Boron nutrition and chilling tolerance of warm climate crop species. Annals of Botany, 2005, vol. 96, рр. 755-767. doi:10.1093/aob/mci228.

Zhang Y.J., Yang J.S., Guo S.J., Meng J.J., ZhangY.L., Wan S.B., He Q.W., Li X.G. Over-expression of the Arabidopsis CBF1 gene improves resistance of tomato leaves to low temperature under low irradiance. Plant Biol, 2011, vol. 13(2), рр. 362-367. doi: 10.1111/j.1438-8677.2010.00365.x.

Lee S.C., Won H.K., An K., An G., Kim S.R. Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol. Cells., 2004, vol. 18, рр. 107-114.

Jaglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998, vol. 280, рр. 104-106.

Liu Q., Ksauga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and lowtemperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell., 1998, vol. 10, рр. 1391-1406.

Zhu B., Xiong A.S., Peng R.H., Xu J., Jin X.F., Memg X.R., Quan-Hong Y. Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Mol. Biol. Rep., 2010, vol. 37, рр. 961-966.

Su C.F., Wang Y.C., Hsieh T.H., Lu C.A., Tseng T.H., Yu S.M. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol., 2010, vol. 153, рр. 145-158.

Vogel J.T., Zarka D.G., Van Anbuskirk H.A., Fowler S.G., Thomashow M.F. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J., 2005, vol. 41, pp. 195-211.

Zhu J., Verslues P.E., Zheng X., Lee B.H., Zhan X., Manabe Y., Sokolchik I., Zhu Y., Dong C.H., Zhu J.K., Hasegawa P.H., Bressan R.A. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 9966-9971.

Tamminen I., Mäkelä P., Heino P., Palva E.T. Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J., 2001, vol. 25, pp. 1-8.

Castiglioni P., Warner D., Bensen R.J., Anstrom D.C., Harrison J., Stoecker M., Abad M., Kumar G., Salvador S., D’Ordine R., Navarro S., Back S., Fernandes M., Targolli J., Dasgupta S., Bonin C., Luethy M.H., Heard J.E. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology, 2008, vol. 147, pp. 446-455.

Kim M.H., Sasaki K., Imai R. Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J. Biol. Chem., 2009, vol. 284, pp. 23454-23460.

Nanjo T., Kobayashi M., Yoshiba Y., Kakubari Y., Yamaguchi-Shinozaki K., Shinozaki K. Antisense supression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett., 1999, vol. 461, pp. 205-210.

Sakamoto A., Murata A.N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol., 1998, vol. 38, pp. 1011-1019.

Hayashi H., Sakamoto A., Nonaka H., Chen T.H.H., Murata N. Enhanced germination under high-salt conditions of seeds of transgenic Arabidopsis with a bacterial gene (codA) for choline oxidase. J. Plant Res., 1998, vol. 111, pp. 357-362.

Pilon-Smits E.A.H., Ebskamp M.J.M., Paul M.J., Jeuken M.J.W., Weisbeek P.J., Smeekens S.C.M. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol., 1995, vol. 107, pp. 125-130.

Khodakovskaya M., McAvoy R., Peters J., Wu H., Li Y. Enhanced cold tolerance in transgenic tobacco expressing a chloroplast omega-3 fatty acid desaturase gene under the control of a cold-inducible promoter. Planta, 2006, vol. 223(5), pp. 1090-100.

Kodama H., Hamada T., Horiguchi C., Nishimura M., Iba K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast Ω-3 fatty acid desaturase in transgenic tobacco. Plant Physiol., 1994, vol. 105, pp. 601-605.

Murata N., Ishizaki-Nishizawa O., Higashi S., Hayashi S., Tasaka Y., Nishida I. Genetically engineered alteration in the chilling sensitivity of plants. Nature, 1992, vol. 356, pp. 710-713.

Phadtare S., Severinov K. RNA remodeling and gene regulation by cold shock proteins. RNA Biology, 2010, vol. 7(6). – pp. 788-795.

Jiang W., Hou Y., Inouye M. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. The journal of biological chemistry, 1997, vol. 272(1), pp. 196-202.

Kim M.H., Sonoda Y., Sasaki K., Kaminaka H., Imai R. Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm. Cell Stress Chaperones, 2013, vol. 18(4), pp. 517-525. doi: 10.1007/s12192-012-0398-3.

Sasaki K., Kim M.H., Imai R. Arabidopsis Cold shock domain protein 2 is a negative regulator of cold acclimation. New Phytol., 2013, vol. 198(1), pp. 95-102. doi: 10.1111/nph.12118.

Ermolenko D.N., Makhatadze G.I. Bacterial cold-shock proteins. Cell. Mol. Life Sci., 2001, vol. 59, pp. 1902-1913.

Bae W., Xia B., Inouye M., Severinov K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. PNAS, 2000, vol. 97(14), pp. 7784-7789.

Nizkorodova A.S., Polyanskaya E.V., Smagulova A.M., Iskakov B.K. Klonirovanie, jekspressija gena EcCspA i ochistka kodiruemogo im belka [Cloning, expression and purification of E. coli cold-shock protein A]. Biotechnology. Theory and Practice, 2013, vol. 3, pp. 71-74. doi: 10.11134/btp.3.2013.12.

Xian-Yan W., Xiao-Yi S., Ai-Fang Y., Ju-Ren Z. Construction of plant expression vector and analysis of herbicide resistance and salt tolerance of transgenic tobacco. Chinese Journal of Agricultural Biotechnology, 2004, vol. 1, рр. 85-91.

Opabode J.T. Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechnology and Molecular Biology Review, 2006, vol. 1, pp. 12-20.

Shackelford N.J., Chlan C.A. Identification of antibiotics that are effective in eliminating Agrobacterium tumefaciens. Plant Mol Biol Rep., 1996, vol. 14, pp. 50-57.

Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull., 1987, vol. 19, pp. 11-15.

Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res., 1991, vol. 19, pp. 1349.

Giavalisco P., Nordhoff E., Lehrach H., Gobom J., Klose J. Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis. Electrophoresis, 2003, vol. 24, pp. 207-216.

Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cells and tissue samples. BioTechniques, 1993, vol. 15, рр. 532-537.

Chomczynski P., Mackey K. Modification of the TRI Reagent procedure for the isoaltion of RNA from polysaccharides and proteoglycan-rich sources. BioTechniques, 1995, vol. 19, pp. 942-945.

Schägger H. Tricine-SDS-PAGE. National Protocols, 2006, vol. 1, pp. 16-22.

Nizkorodova A.S., Iskakov B.K. Cell-Free synthesis optimization of barley vacuolar Na+/H+-antiporter, a highly hydrophobic protein. The Asian and Australasian Journal of Plant Science and Biotechnology, 2010, vol. 4, pp. 52-55.

Nizkorodova A.S., Iskakov B.K. Jekspressija gena ß-gljukuronidazy v listovyh diskah Nicotiana tabacum [ß-glucuronidase gene expression in leaf discs of Nicotiana tabacum]. Biotechnology. Theory and Practice, 2009, vol. 1, pp. 60-65.

Dowson D., Dixon R.A. Plant viral leaders influence expression of a reporter gene in tobacco. Plant Mol. Biol., 1993, vol. 23, pp. 97-109.

Levis C., Astier-Manifacier S. The 5¢-untranslated region of PVY RNA even located in an internal position enables initiation of translation. Virus Genes., 1993, vol. 7, pp. 367-379.

Akbergenov R.Zh., Zhanybekova S.Sh., Kryldakov R.V., Zhigailov A., Polimbetova N.S., Hohn T., Iskakov B.K. ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs. Nucleic Acids Research, 2004, vol. 32, pp. 239-247.

Kratsch H.A., Wise R.R. The ultrastructure of chilling stress. Plant, Cell and Environment, 2000, vol. 23, pp. 337-350.

Aliev I.N., Pankov Y.V. Estestvennaja rastitel'nost' na tehnogennyh zemljah v Kabardino-Balkarskoj respublike [Natural flora on anthropogenic lands in Kabardino-Balkaria]. Red. Y.V. Pankov. Moscow: Nauka, 2011, 160 p.