ALLELE FREQUENCY OF 19 SNPs IN THE KAZAKH POPULATION
Main Article Content
Authors
N.S. Sikhayeva
National Centre for Biotechnology, 13/1, Valikhanov str., Astana, 000001, Kazakhstan
L.N. Gumilev Eurasian National University, 5, Munaitpasov str, Astana, 000001, Kazakhstan
А.А. Iskakova
National Centre for Biotechnology, 13/1, Valikhanov str., Astana, 000001, Kazakhstan
А.М. Aitkulova
National Centre for Biotechnology, 13/1, Valikhanov str., Astana, 000001, Kazakhstan
Е.V. Zholdybayeva
National Centre for Biotechnology, 13/1, Valikhanov str., Astana, 000001, Kazakhstan
K.T. Momynaliev
National Centre for Biotechnology, 13/1, Valikhanov str., Astana, 000001, Kazakhstan
Е.М. Ramanculov
National Centre for Biotechnology, 13/1, Valikhanov str., Astana, 000001, Kazakhstan
Abstract
For understanding genetic predisposition to sports activities it is necessary to pay attention to some genes, such as ACTN3, PPARD, LPL, EDN1, MMP3, INSIG2, PPARGC1A, APOE, SHBG, COL5A1, LEPR, LOXL1, PTPN22, TRAF1. Polymorphisms of these genes are associated with muscular strength, endurance, muscle fiber size and composition. Genetic differences in any of these genes can influence athletic performance. The allele frequency of these genes have been well studied in the European population, but the population of Central Asia has not been extensively studied. It should be noted that the allele frequency may depend on race and ethnicity. The frequency of alleles and genotypes of 19 SNPs were obtained in the Kazakh population (n = 365). The allele frequency (MAF – Minor Allele Frequency) of investigated genes for the Kazakh population were as follows: rs1815739 (С>T) 0,47; rs2016520 (T>C) 0,24; rs328 (C>G) 0,07; rs5370 (G>T) 0,29; rs679620 (С>T) 0,47; rs7566605 (C>G) 0,38; rs8192678 (С>T) 0,52; rs429358 (T>C) 0,14; rs7412 (C>T) 0,05; rs10033464 (G>T) 0,30; rs6258 (C>T) 0,18; rs12722 (C>T) 0,41; rs2025804 (A>G) 0,50; rs2165241 (C>T) 0,38; rs2200733 (C>T) 0,31; rs2476601 (G>A) 0,05; rs3761847 (A>G) 0,48; rs5934505 (T>C) 0,34; rs6457617 (T>C) 0,48.
Keywords
single nucleotide polymorphism, allele frequency, sports genetic, genotype distribution
Article Details
References
Rankinen T., Bray M.S., Hagberg J.M., Perusse L., Roth S.M., Wolfarth B., Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exerc, 2006, no. 38 (11), pp. 1863-1888. PMID: 17095919.
Ahmetov I.I., Hakimullina A.M., Druzhevskaya A.M., Mozhayskaya I.A., Shihova Y.V., Halchitsky S.E., Astratenkova I.V., Komkova A.I., Rogozkin V.A. The estimation of total contribution of gene alleles to the determination of predisposition to sports. Theory and Practice of Physical Culture, 2008, no. 3, pp.67-72.
Zilberman-Schapira G., Chen J., Gerstein M. On sports and genes. Recent Patents on DNA & Gene Sequences, 2012, no. 6, pp. 3-9. PMID:22762737.
Akhmetov I.I., Astratenkova I.V. Rogozkin V. A. Assotsiatsia polimorphisma gena PPARD s phizicheskoi deyatelnotyu cheloveka [Assotiation of PPARD gene polymorphism with the human athletic performance]. Molekulyarnaya biologiya - Molecular biology, 2007, no. 41(5), pp. 852-857.
Goodarzi M.O., Wong H., Quiñones M.J., Taylor K.D., Guo X., Castellani L.W., Antoine H.J., Yang H., Hsueh W.A., Rotter J.I. The 3' untranslated region of the lipoprotein lipase gene: haplotype structure and association with post-heparin plasma lipase activity. J. Clin. Endocrinol. Metab., 2005, no. 8(90), pp. 4816-4823. PMID: 15928243.
Garbusenko S.A. Gipertrophicheskaya kardiomiopatiya: sovremennoe sostoyanie problemy [Hypertrophic cardiomyopathy: state of the problem]. Consiliummedicum: Zhurnal dokazatelnoi mediciny dly apraktikuyushikh vrachei - Journal of evidence-based medicine for medical practitioners, 2004, no. 5(6), pp. 350-355.
Mizon-Gérard F., de Groote P., Lamblin N., Hermant X., Dallongeville J., Amouyel P., Bauters C., Helbecque N. Prognostic impact of matrix metalloproteinase gene polymorphisms in patients with heart failure according to the aetiology of left ventricular systolic dysfunction. European Heart Journal, 2004, no. 25(8), pp. 688-693. PMID: 15084374.
MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase). The National Center for Biotechnology Information. Available at: URL.
Orkunoglu-Suer F.E., Gordish-Dressman H., Clarkson P.M., Thompson P.D., Angelopoulos T.J., Gordon P.M., Moyna N.M., Pescatello L.S., Visich P.S., Zoeller R.F., Harmon B., Seip R.L., Hoffman E.P., Devaney J.M. INSIG2 gene polymorphism is associated with increased subcutaneous fat in women and poor response to resistancetraining in men. BMC Medical Genetics, 2008, pp. 117-126. doi: 10.1186/1471-2350-9-117.
Ahmetov I.I., Fedotovskaya O.N. Sport genomics: current state of knowledge and future directions. Cellular and molecular exercise physiology, 2012, pp. 1-24.
Imanbekova M.K., Zholdybaeva E.V., Esentaev T.K. Momynaliev K.T. Sport i genetika [Sport and genetics]. Biotekhnologiya. Teoriya i praktika - Biotechnology. Theory and practice, 2013, no. 2, pp. 1-11.
Mustafina Yu.F., Islamova A.A. Vliyanie genotipov gena Apolipoproteina E (APOE) na vybor strategii pitaniya [Effect of genotypes of the apolipoprotein E (APOE) gene on the choice of strategy supply]. Innovatsionnyi vector razvitiya nauki: sbornik statei Mezhdunarodnoi nauchno-prakticheskoi konferetsii [Innovative vector of science development: the International Scientific Conference]. Ufa, Aeterna, 2014, pp. 6-7.
SHBG sex hormone-binding globulin (Homo sapiens (human)). The National Center for Biotechnology Information. Available at: URL.
Ackermann P.W., Renström P. Tendinopathy in Sport. Sport Health, 2012, no. 3, pp. 193-201. PMID: 23016086.
Oliveira R., Cerda A., Genvigir F.D., Sampaio M.F., Armaganijan D., Bernik M.M., Dorea E.L., Hirata M.H., Hinuy H.M., Hirata R.D. Leptin receptor gene polymorphisms are associated with adiposity and metabolic alterations in Brazilian individuals. Arq Bras EndocrinolMetabol., 2013, no. 57(9), pp. 677-684. PMID: 24402012.
Pestov N.B., Okkelman I.A., Shmanai V.V., Hurski A.L., Giaccia A.J., Shchepinov M.S. Control of lysyl oxidase activity through site-specific deuteration of lysine. Bioorg. Med. Chem. Lett., 2011, no. 21, pp. 255-258. PMID: 21106372.
Ivanova O.N., Prokophev S.A., Smirnova N.B., TishinaYu.V., Bardymova T.P., Danilova G.I., Kovalenko T.V., Titovich E.V., Kuraeva T.L., Peterkova V.A., Dedov I.I. Assotsiatsia polimorphisma gena PTPN22 s sakharnym diabetom 1 tipa v razlichnykh populyatsiyakh RF [Association of the polymorphism of gene PTPN22 with 1 type diabetes in the different population of Russian Federation]. Sakharnyi diabet – Diabetes, 2013, no. 2, pp. 4-10.
TRAF1 TNF receptor-associated factor 1 (Homo sapiens (human)). The National Center for Biotechnology Information.Available at: www.ncbi.nlm.nih.gov/gene/7185.
Nishimoto T., Seta N., Anan R., Yamamoto T., Kaneko Y., Takeuchi T., Kuwana M. A single nucleotide polymorphism of TRAF1 predicts the clinical response to anti-TNF treatment in Japanese patients with rheumatoid arthritis. ClinExpRheumatol., 2014, no. 32(2), pp. 211-217. PMID: 24321457.
Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res., 1988, no 16(3), pp. 1215. PMCID: PMC334765.
Povel C.M., Boer J.M., Imholz S., Dollé M.E., Feskens E.J. Genetic variants in lipid metabolism are independently associated with multiple features of the metabolic syndrome. Lipids in Health and Disease, 2011, no. 10, pp. 118. PMID: 21767357.
Greenow K., Pearce N.J., Ramji D.P. The key role of apolipoprotein E in atherosclerosis. J Mol Med., 2005, no. 83, pp. 329-342. PMID: 15827760.
AlfredT.,Ben-Shlomo Y., Cooper R.,Hardy R., Cooper C.,Deary I.,Gunnell D.,Harris E.,Kumari M.,Martin R.,Moran C.,Pitsiladis Y., Ring S.,Sayer A., Davey G. ACTN3 Genotype, Athletic Status, and Life Course Physical Capability: Meta-Analysis of the Published Literature and Findings from Nine Studies. Human Mutation, 2011, no. 32, pp. 1008-1018. PMID: 21542061.
Druzhevskaya A.M., Ahmetov I.I., Astratenkova I.V., RogozkinV.A. Association of the ACTN3 gene variant with endurance athlete status. Eur J Hum Genet. Supp. 2., 2008, no. 16, pp. 363-364. PMID: 18718976.
Wood A.C., Glasser S., Garvey W.T., Kabagambe E.K., Borecki I.B., Tiwari H.K., Tsai M.Y., Hopkins P.N., Ordovas J.M., Arnett D.K. Lipoprotein Lipase S447X variant associated with VLDL, LDL and HDL diameter clustering in the MetS. Lipids in Health and Disease, 2011, no. 10, pp. 143. PMID: 21854610.
Raleigh S.M., van der Merwe L., Ribbans W.J., Smith R.K., Schwellnus M.P., Collins M. The MMP3 Gene Are Associated With Achilles Tendinopathy: Possible Interaction With The COL5A1 Gene. British Journal Of Sports Medicine, 2009, no. 43, pp. 514-520. PMID: 19042922.
Damani SB, Topol EJ. Molecular genetics of atrial fibrillation. Genome Med., 2009, no. 22, pp. 1-54. doi: 10.1186/gm54.
Brown J.C., Miller C.J., Schwellnus M.P., Collins M. Range of motion measurements diverge with increasing age for COL5A1 genotypes. Scand J Med Sci Sports, 2011, no. 21, pp. 266-272. PMID: 21362053.
Thorleifsson G., Magnusson K.P., Sulem P., Walters G.B., Gudbjartsson D.F., Stefansson H., Jonsson T., Jonasdottir A., Jonasdottir A., Stefansdottir G., Masson G., HardarsonG.A., Petursson H., Arnarsson A., Motallebipour M., Wallerman O., Wadelius C., Gulcher J.R., Thorsteinsdottir U., Kong A., Jonasson F., Stefansson K. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science, 2007, no. 7, pp. 1397-1400. PMID: 17690259.
SNPedia. Available at:www.snpedia.com/index.php/Rs5934505.
Iskakova A., Romanova A., Voronina E., Sikhayeva N., Belozerceva L., Filipenko M., Ramanculov E. Allele frequency and genotype distribution of 9 SNPs in the Kazakh population. J Pharmacogenomics Pharmacoproteomics, 2014, no. 5(2). doi:10.4172/2153-0645.1000129.