Study Of Genetic Diversity And Resistance Of Fruit Crops To Main Pathogens Using DNA Markers

Main Article Content


A. Abdullaev

Center for Advanced Technologies under the Ministry of Innovative Development

 of the Republic of Uzbekistan, 3 a, Talabalar shaharchasi str., Tashkent, 100174, Uzbekistan.

A. Abdurakhimov

Center for Advanced Technologies under the Ministry of Innovative Development

 of the Republic of Uzbekistan, 3 a, Talabalar shaharchasi str., Tashkent, 100174, Uzbekistan.

M. Rejapova

Center for Advanced Technologies under the Ministry of Innovative Development

 of the Republic of Uzbekistan, 3 a, Talabalar shaharchasi str., Tashkent, 100174, Uzbekistan.


Breeding modern varieties of fruit crops requires the study of their biodiversity as a source of genes for useful traits, with the aim of transferring them to genome of commercial varieties. Application of genomic technologies can significantly speed up the breeding process. Identification and application of DNA markers for the study of genetic diversity, varietal identification, as well as the transfer of genes of valuable economic traits through marker assisted selection programs is of great applied importance. The article discusses the results of studies to identify genes and DNA markers associated with resistance of some fruit crops to major diseases.


DNA marker, genes, loci, identification, resistance

Article Details


Weber J.L., May P.E. Abundant class of human DNApolymorphism which can be typed using the polymerase chainreaction. Am. J. Hum. Genet., 1989, vol.44, pp. 388-396.

Hokanson S.C., Szewc-McFadden A.K., Lamboy W.F., McFerson J.R. Mocrosatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica Borkh. Core subset collection .Theor.Appl.Genet., 1998, vol. 97, pp. 671-683.

Di Gaspero G., Peterlunger E., Testolin R., Edwards K. J., Cipriani G. Conservation of microsatellite loci within thegenus Vitis. Theor. Appl. Genet., 2000, vol. 101, pp. 301-308.

Cipriani G., Lot G., Huang W-G., Marrazzo M.T., Peterlunger E., Testolin R. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L)Batsch]: isolation, characterization and cross-species amplification in Prunus. Theor. Appl. Genet., 1999, vol.99, pp. 65-72.

Gianfranceschi L., Seglia N., Tarchini R., Komjanc M., Gessler C. Simple sequence repeats for the genetic analyses of apple. Theor. Appl. Genet., 1998, vol.96, pp.1069-1079.

Maliepaard C., Alston F.H., Van Arkel G., Brown L.M., Chevreau E., Dunemann F., Evans K.M., Gardiner S., Guilford P., Van Heusden A.W., Janse J., Laurens F., Lynn J.R., Manganaris A.G., Den Nijs A.P.M., Periam N., Rikkerink E., Roche P., Ryder C., Sansavini S., Schmidt H., Tartarini S., Verhaegh J.J., Vrielink-Van Ginkel M., King G.L. Aligning male and female linkage mars of apple (Malus pumilla Mill.) using multiallelic markers. Theor. Appl. Genet., 1998, vol.97, pp. 60-73.

Hokanson S.C., Lamboy W.F., SzewcMcFadden A.K., McFerson J.R.Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids Euphytica, 2001, vol. 118, pp. 281-294.

Liebhard R., Gianfranceschi L., Koller B. et al. Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.) Molecular Breeding., 2002, vol.10, pp. 217-241.

Kenis K., Keulemans J. Genetic linkage maps of two apple cultivars (Malus domestica Borkh.) based on AFLP and microsatellite markers. Molecular Breeding, 2005, vol. 15, pp. 205-219.

Silfverberg-Dilworth E., Matasci C.L., Van de Weg W.E., Van Kaauwen M.P. W., Walser M., Kodde L.P., Soglio V., Gianfranceschi L., Durel C.E., Costa F., Yamamoto T., Koller B., Gessler C., Patocchi A Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genetics & Genomes, 2006, vol. 2, pp. 202-224.

Celton J.-M., Tustin D.S., Chagné D., Gardiner S.E.Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genetics & Genomes, 2009, vol. 5, pp. 93-107.

Collard B., Mackill D., Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Physiological Transactions of the Royal Society B: Biological Sciences, 2008, vol.363, pp. 557-572.

Yunbi Xu, Crouch J. H.. Marker-Assisted Selection in Plant Breeding: From Publications to Practice. Crop Sci., 2008, vol. 48, pp. 391-407. https://doi: 10.2135/ cropsci2007.04.0191

Joshi R.K., Nayak S., Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. // Biotechnology and Molecular Biology Review. - 2010. - Vol.5. - P. 51-60.

Pereira-Lorenzo S., Ramos-Carber A.M., Fischer M. Breeding Apple (Malus ×domestica Borkh). In Jain, Shri Mohan, Priyadarshan, P.M. (eds.). Breeding Plantation TreeCrop: Temperate Species. Springer-Verlag. New York. 2009, pp. 33-81.

Velasco Riccardo. The genome of the domesticated apple (Malus × domestica Borkh.) / Riccardo Velasco, Andrey Zharkikh, Jason Affourtit. Nature Genetics, 2010, vol. 42, pp. 833-839. https://doi:10.1038/ng.654

Velasco Riccardo. The genome of the domesticated apple (Malus × domestica Borkh.) / Riccardo Velasco, Andrey Zharkikh, Jason Affourtit. Nature Genetics, 2010, vol. 42, pp. 839-841. https://doi:10.1038/ng.654

Guilford P., Prakash S., Zhu J.M., Rikkerink E., Gardiner S., Bassett H., Forster R. Microsatellites in Malus x domestica (apple): abundance, polymorphism and cultivar identification. Theor.Appl.Genet., 1997, vol.94, pp. 249-254.

Galli Z., Halasz G., Kiss E., Haszky L. Molecular identification of commercial apple cultivars with microsatellite markers. Hort Sci., 2005, vol.40, pp.1974-1977.

Shamshin I. N. Ocenka geneticheskogo raznoobraziya sortov i form yabloni s ispol'zovaniem DNK-markerov.- Dissertaciya na soiskanie stepeni kand.biol.nauk. Vserossijskij nauchno-issledovatel'skij institut genetiki i selekcii plodovyh rastenij im. I.V. Michurina, 2014.

Patocchi A., Walser M., Tartarini S., Broggini G.A.L., Gennari F., Sansavini S. & Gessler C. Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm . Genome, 2020, vol. 48, pp.630-636.

Gessler C., Patocchi A., Sansavini S., Tartarini S. & L. Gianfranceschi (). Venturia inaequalis resistance in apple. Critical Reviews in Plant Sciences, 2006, vol. 25, pp. 473-503.

Savel'ev N.I., Savel'eva N.N., YUshkov A.N. Perspektivnye immunnye k parshe sorta yabloni: nauchnoe izdanie - Michurinsk-naukograd RF, 2009, 126 s.

Khajuria Y.P., Kaul S., Wani A.A. et al. Genetics of resistance in apple against Venturia inaequalis (Wint.) Cke. Tree Genetics & Genomes, 2018, vol.14, pp. 16. Crossref

Afunian M.R., Goodwin P.H. Hunter Linkage of Vfa4 in Malus х domestica and Malus floribunda with Vf resistance to the apple scab pathogen Venturia inaequalis. Plant Pathology, 2004, vol. 53, pp. 461-467.

Papp D., Singh J., Gadoury D.M., Khan M.A. New North American isolates of Venturia inaequalis can overcome apple scab resistance of Malus floribunda 821. Plant Dis., 2019, vol.104, no.3, pp.649-55.

Vinatzer B., Zhang H., Sansavini S. Construction and characterization of a bacterial artificial chromosome library of apple. Theoretical and Applied Genetics., 1998, vol. 42, pp. 1183-1190.

Tartarini S., Gianfranceschi L., Sansavini S. Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breeding., 1999, vol.118, pp. 183-186.

Bekbergen Anel. Marker assisted breeding and screening of apple scab resistance (Vf gene) from columnar apple seedlings by PCR. MSc Thesis/ Green Biotechnology and Food Security/ University of Eastern Finland/Faculty of Science and Forestry/Department of Environmental and Biological Sciences/ September 23. - 2016.

Erdin N., Tartarini S., Broggini G.AL., Gennari F., Sansavini S., Gessler C., Patocchi A. Mapping of the apple scab-resistance gene Vb. Genome, 2006, vol.49, pp.1238-1245.

Suprun I.I., Tokmakov S.V., Stepanov I.V., Ivanova A.M. Razrabotka mul'tipleksnogo nabora dlya markernoj selekcii yabloni na ustojchivost' k parshe. Nauchnye trudy SKZNIISIV, 2017, t. 12, c.26-30.

Sekiguchi A. Studies on the alternaria leaf spot disease of apples caused by Alternaria mali Roberts. Bul. Nagono Hort. Expt. Sta., 1976, vol. 12, pp.1-63.

Sawamura K. Alternaria blotch, In: Jones, A. and H. Aldwinckle (ed.). Compendium of apple and pear diseases. APS Press: St. Paul., 1990, pp. 24-25.

Saito A., Nakazawa N., Suzuki M. Selection of mutants resistant to alternaria blotch from in vitro-cultured apple shoots irradiated with X- and [gamma]-rays. J. Plant Physiol., 2001, vol.158, pp.391-400.

Lee, D.H., Lee G.E. Studies on causal agents, overwintering of organisms and control of alternaria leaf spot of apple. J. Korean Soc. Hort. Sci., 1972, vol. 11, pp .41-47.

Filajdic N., Sutton T.B. Indentification and distribution of Alternaria mali on apples in North Carolina and susceptiblity of different cultivars of apples to alternaria blotch. Plant Dis., 1991, vol. 75, pp.1045-1048.

Zhao L. Detection of RAPD marker linked to the resistance gene to alternaria leaf spot in apples. Northwest A&F University Press, Yang Ling, China. [in Chinese].- 2008.

Li Haoxian, Cao Shang-yin, Niu juan, Yuan Pinli, Zhao Diguang and Zhang Fuhong. The Types and Application of Molecular Markers in the Study of Pomegranate Germplasm Resources. [Proc. IIIrd IS on Pomegranate and Minor Mediterranean Fruits]. Acta Hort. -1089, ISHS., 2015.

Moriya S., Terakami S., Okada K. et al. Identification of candidate genes responsible for the susceptibility of apple (Malus × domestica Borkh.) to Alternaria blotch. BMC Plant Biol., 2019, vol.19, pp.132. Crossref

Brisset M.N., Faize,M., Heintz C., Cesbron S., Chartier R., Tharaud, M. and Paulin, J.P. Induced resistance to Erwinia amylovora in apple and pear. Acta Hortic. 2002, vol. 590, pp. 335-338. https://doi: 10.17660/ActaHortic.2002.590.49

Dondini L., Pierantoni L., Gaiotti F. et al. Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol. Breed., 2004, vol. 14, pp. 407-418.

Durel C.E., Guérif P., Belouin A., Le Lezec M. Estimation of Fire Blight Resistance Heritability in the French Pear Breeding Program Using a Pedigree-Based Approach. Acta Hortic., 2004, vol. 663, pp. 251-256. https://doi: 10.17660/ ActaHortic. 2004.663.40.

Calenge F., Drouet D., Denance C., Vande Weg W.E., Brisset M. N., Paulin J.P., Durel C-E. Identificationof a major QTL together with severalminor additive or epistatic QTLs forresistance to fire blight in apple intwo related progenies. Theor.appl. Genet., 2005, vol.111, pp. 128-135.

Khan M.A., Duffy B., Durel C.E., Gessler C., Patocchi A. QTL mapping of fire blight resistance in apple. Mol. Breed., 2006, vol.17, pp.299-306.

Khan M.A., Durel C.-E., Duffy B. et al. Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome, 2007, vol. 50, pp. 568-577.

Markussen T., Krüger J., Schmidt H.& Dunemann F. Identification of PCR-based markers linked to the powdery mildew resistance gene Pl1 from Malus robusta in cultivated apple. Plant Breed., 1995, vol.114, pp. 530-534.

Seglias N.P., Gessler C. Genetics of apple powdery mildew resistance derived from Malus zumi (Pl2). IOBC/WPRS BULL., 1997, vol.20, no.9, pp. 195-208.

Gardiner S., Murdoch J., Meech S. et al. Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Hortic., 2003, vol. 622, pp. 141-151.

Urbanovich O.YU., Kozlovskaya Z.A., Kartel' N.A. Rasprostranenie genov ustojchivosti k muchnistoj rose v kollekcii sortov i vidov yabloni, vyrashchivaemyh v Belarusi. Molekulyarnaya i prikladnaya genetika. Molekulyarnaya i prikladnaya genetika:sbornik nauchnyh trudov / Institut genetiki i citologii. - Minsk, 2010, t. 11. - s. 20-25.

Oliveira C.M., Mota M., Monte-Corvo L., Goulao L., Silva D.M. Molecular typing of Pyrus based on RAPD markers. Sci Hortic., 1999, vol. 79, pp.163-174.

Bell R.L., Quamme H.A., Layne R.E.C., Skirvin R.M. Pears. In: J Janick & J N Moore (Eds.), Fruit Breeding., 1996,vol. 1, pp. 441- 514.

Belaj A., Satovic Z., Rallo L., Trujillo I. Genetic diversity and relationships in olive (Olea europaea L.) germplasm collections as determined by randomly amplified polymorphic DNA. Theor Appl Genet., 2002, vol. 105, pp.638-64.

Safarpour S.M., Bahar M., Tabatabaei B., Abdollahi A. Determination of genetic diversity in pear (Pyrus spp.) using microsatellite markers. Iran J Hortic Sci Technol., 2008, vol.9, no.2, pp.113-128.

Chagne D., Crowhurst R.N., Pindo M., Thrimawithana A., Deng C., Ireland H., Fiers M., Dzierzon H., Cestaro A., Fontana P. The draft genome sequence of European pear (Pyrus communis L. «Bartlett»). PLoS ONE, 2014, vol. 9, no. 4, e92644. 56. Bouvier L., Bourcy M., Boulay M., Tellier M., Guerif P., Denance C., Durel C.-E., Lespinasse Y. A new pear scab resistance gene Rvp1 from the European pear cultivar “Navara” mars in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2. Tree Genet. Genomes., 2012, vol. 8, pp.53-60. https://doi 10.1007/s11295-011-0419-x

Bokszczanin K., Dondini L., Przybyla A.A. First report on the presence of fire blight resistance in linkage group 11 of Pyrus ussuriensis Maxim. J. Appl. Genet., 2009, vol. 50, no. 2, pp. 99-104.

Montanari S., Perchepied L., Renault D., Frijters L., Velasco R. Horner H. Gardiner S.E. Chagne´ D. Bus V.Durel C.-E. Malnoy M. A QTL detected in an interspecific pear population confers stable fire blight resistance across different environments and genetic backgrounds. Mol Breeding., 2016, vol. 36, pp.47.

Dondini, L. et al., Identification of a QTL for psylla resistance in pear via genome scanning approach. Sci. Hortic., 2015, https://doi:10.1016/j.scienta.2015.10.018

Teixeira da Silva J.A., Rana T.S., Narzary D., Verma N., Meshram D.T., Ranade S.A. Pomegranate biology and biotechnology: a review. Sci Hortic., 2013, vol.160, pp.85-10.

Levin G.K., Pomegranate (Punica granatum) plant genetic resources in Turkmenistan. Plant Genet. Res. Newslett., 1994, vol.97, pp. 31-37.

Rana J.C., Pradheep K., Verma V. Naturally occurring wild relatives of temperate fruits in Western Himalayan region of India: an analysis. Biodivers Conserv., 2007, vol. 16, no.14, pp.3963-3991.

Hasnaoui Nejib, Anna Buonamici, Federico Sebastiani, Messaoud Mars, Dapeng Zhange, Giovanni G. Vendramin. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR). Gene, 2012, vol.493, pp. 105-112.

Ying Li, Liyi Zhang, Zhen Zhang, Peihua Cong, Zong-Ming Cheng. A Simple Sequence Repeat Marker Linked to the Susceptibility of Apple to Alternaria Blotch Caused by Alternaria alternata Apple Pathotype. J. Amer. Soc. Hort. Sci., 2011, vol.136, no.2, pp.109-115.

Pirseyedi S.M., Valizadehgan S., Mardi M., Ghaffari M.R., Mahmoodi P., Zahravi M., Zeinalabedini M., Khayam-Nekoui S.M. Isolation and characterization of novel microsatellite markers in pomegranate (Punica geranatum L.). lnt. J. Mol. Sci., 2010, vol. 11, pp. 2010-2016.

Basaki Tayebe, Choukan Rajab, Seyed Mojtaba Khayam Nekouei, Mohsen Mardi, Eslam Majidi, Sakine Faraji and Mehrshad Zeinolabedini. Association Analysis for Morphological Traits in Pomegranate (Punica geranatum L.) Using Microsatellite Markers. Middle-East Journal of Scientific Research., 2011, vol.9, no.3, pp. 410-417.

Singh N.V., Abburi V.L., Ramajayam D., Kumar R., Chandra R., Sharma K.K., Sharma J., Babu K.D. Genetic diversity and association mapping of bacterial blight and other horticulturally important traits with microsatellite markers in pomegranate from India. Mol Genet Genomics., 2015, vol.290, no.4, pp. 1393-402. http://doi: 10.1007/s00438-015-1003-0.