ANTIBIOTIC RESISTANCE OF HELICOBACTER PYLORI ISOLATES FROM KAZAKH PATIENTS

Main Article Content

Authors

G.N. Kulmambetova

National Center for Biotechnology, 13/5, Korgalzhyn road, Astana, 010000, Kazakhstan

E.E. Bekenova

Republic Collection of Microorganisms, 13/1, Valikhanov str., Astana, 010000, Kazahstan

A.K. Tujakova

Republic Collection of Microorganisms, 13/1, Valikhanov str., Astana, 010000, Kazahstan

S.S. Kozhakhmetov

Republic Collection of Microorganisms, 13/1, Valikhanov str., Astana, 010000, Kazahstan

A.A. Logvinenko

National Research Medical Center, 42, Abylai Khan ave., Astana, 010000, Kazakhstan

A.T. Sukashev

National Research Medical Center, 42, Abylai Khan ave., Astana, 010000, Kazakhstan

K.K. Almagambetov

National Research Medical Center, 42, Abylai Khan ave., Astana, 010000, Kazakhstan

Abstract

Helicobacter pylori strains can be resistant to important triple combination therapies for H. pylori eradication. The aim of this study was to investigate the rate of resistance to clarithromycin, metronidazole, amoxicillin, tetracycline, and rifampicin, as well as to detect antibiotic resistance-associated mutations in H. pylori isolates from patients in Kazakhstan. Susceptibility of 20 H. pylori strains was tested using the E test method. Genes associated with resistance and susceptible clinical isolates were sequenced in order to assess resistance and non-resistance associated genetic alterations. Of the 20 clinical isolates examined, 8 (40%) showed phenotypic resistance to metronidazole (MIC > 256 mg/L), 13 (65%) to clarithromycin (MIC > 256 mg/L), and 1 (5%) to amoxicillin (MIC > 6 mg/L). The majority of resistant strains had point mutations in the 23S rRNA gene and rdxA gene, and one strain had mutations in the pbp1A gene. The remaining isolates with moderate resistant isolates (MIC <0.016 mg/L) demonstrated a drug-susceptible phenotype, and did not harbour any mutation in the gene sequences evaluated. In the Kazakh population of existing clarithromycin and metronidazole resistance, tetracycline, amoxicillin, and rifampicin could prove useful for rescue regimens in patients with previously unsuccessful H. pylori eradication regimens.

Keywords

Helicobacter pylori, clarithromycin, metronidazole, amoxicillin, tetracycline, rifampicin

Article Details

References

Sanders M.K., Peura D.A. Helicobacter pylori-Associated Diseases. Curr Gastroenterol Rep, 2002, vol. 4, no. 6, pp. 448-454.

Kim S.Y., Joo Y.M., Lee H.S. et al. Genetic analysis of Helicobacter pylori clinical isolates suggests resistance to metronidazole can occur without the loss of functional rdxA. J Antibiot (Tokyo), 2009, vol. 62, no. 1, pp. 43-50. doi: 10.1038/ja.2008.6.

Kao C.Y., Lee A.Y., Huang A.H. et al. Heteroresistance of Helicobacter pylori from the same patient prior to antibiotic treatment. Infect Genet Evol, 2014, vol. 23, pp. 196-202. doi: 10.1016/j.meegid.2014.02.009.

Zhou L., Zhang J., Chen M. et al. A comparative study of sequential therapy and standard triple therapy for Helicobacter pylori infection: a randomized multicenter trial. Am J Gastroenterol, 2014, vol. 109, no. 4, pp. 535-541. doi: 10.1038/ajg.2014.26.

Secka O., Berg D.E., Antonio M. et al. Antimicrobial susceptibility and resistance patterns among Helicobacter pylori strains from The Gambia, West Africa. Antimicrob Agents Chemother, 2013, vol. 57, no. 3, pp. 1231-1237. doi: 10.1186/12-3.

Alfaresi M.S., Elkoush A.A. Characterization of clarithromycin resistance in isolates of Helicobacter pylori from the UAE. Indian J Gastroenterol. 2010, vol. 29, no. 3, pp. 116-120. doi: 10.1007/s12664-010-0034-z.

Gerrits M.M., Schuijffel D., van Zwet A.A. et al. Alterations in penicillin-binding protein 1A confer resistance to beta-lactam antibiotics in Helicobacter pylori. Antimicrob Agents Chemother, 2002, vol. 46, no. 7, pp. 2229-2233.

Wu J.Y., Kim J.J., Reddy R. et al. Tetracycline-resistant clinical Helicobacter pylori isolates with and without mutations in 16S rRNA-encoding genes. Antimicrob Agents Chemother, 2005, vol. 49, no. 2, pp. 578-583.

Heep M., Rieger U., Beck D. et al. Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2000, vol. 44, no. 4, pp. 1075-1077.

Kim J.M., Kim J.S., Kim N. et al. Gene mutations of 23S rRNA associated with clarithromycin resistance in Helicobacter pylori strains isolated from Korean patients. J Microbiol Biotechnol, 2008, vol. 18, no. 9, pp. 1584-1589.

Matteo M.J., Perez C.V., Domingo M.R. et al. DNA sequence analysis of rdxA and frxA from paired metronidazole-sensitive and -resistant Helicobacter pylori isolates obtained from patients with heteroresistance. Int J Antimicrob Agents, 2006, vol. 27, no. 2, pp. 152-158.

Gerrits M.M., de Zoete M.R., Arents N.L. et al. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob Agents Chemother, 2002, vol. 46, no. 9, pp. 2996-3000.

Keshavarz Azizi Raftar S., Moniri R., Saffari M. et al. The Helicobacter pylori Resistance Rate to Clarithromycin in Iran. Microb Drug Resist, 2014, vol. 21, doi: 10.1089/mdr.2014.0104.

Giorgio F., Principi M., De Francesco V. et al. Primary clarithromycin resistance to Helicobacter pylori: Is this the main reason for triple therapy failure? World J Gastrointest Pathophysiol, 2013, vol. 4, no. 3, pp. 43-46. doi: 10.4291/wjgp.v4.i3.43.

Seck A., Burucoa C., Dia D. et al. Primary antibiotic resistance and associated mechanisms in Helicobacter pylori isolates from Senegalese patients. Ann Clin Microbiol Antimicrob, 2013, vol. 12, pp. 3. doi: 10.1186/12-3.

Sakinc T., Baars B., Wuppenhorst N. et al. Influence of a 23S ribosomal RNA mutation in Helicobacter pylori strains on the in vitro synergistic effect of clarithromycin and amoxicillin. BMC Res Notes, 2012, vol. 5, pp. 603. doi: 10.1186/5-603.

Agudo S., Perez-Perez G., Alarcon T. et al. Rapid detection of clarithromycin resistant Helicobacter pylori strains in Spanish patients by polymerase chain reaction-restriction fragment length polymorphism. Rev Esp Quimioter, 2011, vol. 24, no. 1, pp. 32-36.

Boyanova L., Mitov I. Geographic map and evolution of primary Helicobacter pylori resistance to antibacterial agents. Expert Rev Anti Infect Ther., 2010, vol. 8, no. 1, pp. 59-70. doi: 10.1586/eri.09.113.

Sherif M., Mohran Z., Fathy H. et al. Universal high-level primary metronidazole resistance in Helicobacter pylori isolated from children in Egypt. J Clin Microbiol, 2004, vol. 42, no. 10, pp. 4832-4834.

Goodwin A., Kersulyte D., Sisson G. et al. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol Microbiol., 1998, vol. 28, no. 2, pp. 383-393.

Kwon D.H., Dore M.P., Kim J.J. et al. High-level beta-lactam resistance associated with acquired multidrug resistance in Helicobacter pylori. Antimicrob Agents Chemother, 2003, vol. 47, no. 7, pp. 2169-2178.

Trieber C.A., Taylor D.E. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J Bacteriol., 2002, vol. 184, no. 8, pp. 2131-2140.

Zhang Y., Gao W., Cheng H. et al. Tetracycline- and Furazolidone-containing Quadruple Regimen as Rescue Treatment for Helicobacter pylori Infection: A Single Center Retrospective Study. Helicobacter., 2014, vol. 12, no. 5, pp. 382 – 386. doi: 10.1111/hel.12143.

Kwon D.H., Kim J.J., Lee M. et al. Isolation and characterization of tetracycline-resistant clinical isolates of Helicobacter pylori. Antimicrob Agents Chemother., 2000, vol. 44, no. 11, pp. 3203-3205.

Gisbert J.P., Calvet X. Review article: rifabutin in the treatment of refractory Helicobacter pylori infection. Aliment Pharmacol Ther., 2012, vol. 35, no. 2, pp. 209-221. doi: 10.1111/j.1365-2036.2011.04937.x.