Main Article Content


B.R. Umarov

Institute of Microbiology, Academy of Sciences of Uzbekistan, 7b, A. Kadyri str., Tashkent, 100128, Uzbekistan

A.V. Sagdiev

A.S. Sadykov Institute of Bioorganic Chemistry, Academy of  Sciences of the Republic of Uzbekistan, 83, M. Ulugbek str., Tashkent, 100125, Uzbekistan

A.V. Kim

A.S. Sadykov Institute of Bioorganic Chemistry, Academy of  Sciences of the Republic of Uzbekistan, 83, M. Ulugbek str., Tashkent, 100125, Uzbekistan

U.K. Inagamov

A.S. Sadykov Institute of Bioorganic Chemistry, Academy of  Sciences of the Republic of Uzbekistan, 83, M. Ulugbek str., Tashkent, 100125, Uzbekistan


The local strain of Trichoderma harzianum В1 produces cellulolytic enzymes when cultured submerged in a medium containing 2% wheat bran as the sole carbon source. Chromatography systems using different carriers and different matrices, including Sephadex G-75, P-60 Akrileks, and ion exchange chromatography on DEAE 650M gel Toyperl, were used to isolate three isoforms of endo-1,4-β-glucanase (EC, EG 1, EG 2, and EG 3 and determined a molecular weight (MW) of 35±1 kDa. The isolates exhibited a cellulolytic activity of 90.4, 77.52, and 78.92 U/mg protein. In addition, we isolated four isoforms of cellobiase (1.3-β-glucosidase, EC CBH 1, CBH 2, CBH 3, and CBH 4 with aMW 24±1 kDa, and a cellulolytic activity of 2.60, 3.80, 4.3, and 3.0 U/mg protein. The influence of the temperature, pH, and metal ions on the activity was determined for the cellulolytic enzymes. The optimal pH and temperature of endo-1,4-β-glucanase and cellobiase (1,3-β-glucosidase) was observed to bepH 4.8 and 50°C. The effect of the monovalent and divalent metal ions K, Na, Fe, Mg, and Mn in a buffered medium increased the enzymatic activity of 1,4-β-glucanase by10%, and of 1,3-β-glucosidase by 15%.


Trichoderma harzianum В1, cellulolytic enzymes, 1,3-β-glucosidase, endo-1,4-β-glucanase

Article Details


Rabinovich M.L., Chernoglazov V.M., Klesov A.A. Klassifikasiya cellulas, ih rasprostranennost, mnojestvennie formi i mehanismi deystviya cellulas [Classification of cellulase and their spreading multiple forms and mechanisms of the action cellulose]. Itogi nauki i techniki. VINITI, ser. Biotehnologiya - Totals of the science and technology, series of biotechnology. Moscow, Publ. Nauka, 1998, vol. 11, pp. 4-149.

Moloney A.P., S.I.McCrae, Wood T.M., and Coughlan M.P. Isolation and characterization of the 1,4-beta-D-glucan glucanohydrolases of Talaromyces emersonii. J. Biochem., 1985, vol. 225, pp. 365-374.

Kanda T., Wakabayashi K., Nishizawa K. Synergistic action of two different types of endo-cellulase components from Irpex lacteus (Polyporus tulipiferae) in the hydrolysis of some insoluble celluloses. J. Biochem., 1976, vol. 79, pp. 997-1006.

Rodionova N.A. Fermentativnoyie rasshepleniyie cellulozi. Cellulazi mikroorganizmov. [Enzymatic saccharification of cellulose. Cellulase of microorganisms]. Kretovich V.L. ed. Moscow, Publ. Nauka, 1981, pp. 4-40.

Rabinovich M.L., Nguen Van veet, Klesov A.A. Sinergizm pri sovmestnom deystvie endoglukanaz s visokim i nizkim srodstvom k sellulose [Synergism under joint action endogluconase with high and low relationship to cellulose]. Prikladnaya Biokhimiya i Mikrobiologiya – Applied Microbiology and Biochemistry, 1986, vol. 22, no. 1, pp. 70-79.

Mandels M., Reese E.T. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol., 1957, vol. 73, pp. 269-278.

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, vol. 72, pp. 248-254.

Somogyi M. Notes on sugar determination. J. Biol. Chem., 1952, vol. 195, pp. 19-23.

Laemli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, no. 5257 (227), pp. 680-685.

Ulker A., Sprey В. Characterization of an unglycosylated low molecular weight 1,4-beta-glucan-glucanohydrolase of Trichoderma reesei. FEMS Microbiol. Lett., 1990, vol. 57, no. 3, pp. 215-219.

Hall J., Hazlewood G.P., Barker P.J., Gilbert H.J. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene, 1988, vol. 15, no. 69(1), pp. 29-38.

Langsford M.L., Gilkes N.R., Singh B., Moser B., Miller R.C. Jr., Warren R.A.J., Kilburn D.G. Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett., 1987, vol. 225, pp. 163-167.

Wood T.M., McCrae S.I., Macfarlane C.C. The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulose. J. Biochem., 1980, vol. 189, pp. 51-65.

Labudova I., Farkas V. Endoglucanases by Trichoderma reesei QM9414. Biochem. Biophys. Acta., 1983, vol. 744, pp. 135-140.

Calza R.E., Irwin D.C. and Wilson D.B. Purification and characterization of two β-1-4-endoglucanases from Thermomonospora fusca. J. Biochemistry, 1985, vol. 24, pp. 7797-7804.

Kim C-H. Characterization and substrate specificity of an endo-β-1,4-D-glucanse I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl. Environ. Microbiol., 1995, vol. 61, pp. 959-965.

Stewart J.C., Heptinstall J. Cellulase of Aspergillus niger. Methods Enzymol., 1988, vol. 160, pp. 264-274.

Wood T.M., Mc.Crae S.I. The cellulase of T. koningii. Purification and properties of some endoglucanase components with special reference to their action on cellulose when acting alone and in synergism with the cellobiohydrolase. J. Biochem., 1978, vol. 171, pp. 61-72.

Rumyanseva G.N., Rodionova N.A. Cellulasi mikroorganizmov, razdel “Ochistka i harakteristika dvuh tipov β–glukozidaz; sellobiazi i arilglukozidazi” [Cellulase of microorganism, section “Purification and feature two types β-glucosidases, cellobiase and arilglucosidases”]. Moscow, Publ. Nauka, 1981, 344 p.

De Gussem R.L., Aerts G.M., Claeyssens M., De Bruyne C.K. Purification and properties of an induced beta-D-glucosidase from stachybotrys atra. Biochim. Biophys. Acta, 1978, vol. 525, pp. 142-153.

Jeng W.Y., Wang N.C., Lin M.H., Lin C.T. et al. Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J. Struc. Biol., 2010, vol. 173(1), pp. 46-56.

Korotkova O.G. Polucheniye cellulasnikh kompleksov s uvelichennoy osaharivayushey sposobnostyu na osnove rekombinantnih shtammov Penicillium verruculosum. Diss. Kand. Khim. Nauk [The Reception cellulose complex with increased saccharification ability on base recombinant strains of Penicillium verruculosum. Kand. Khim. Sci. Diss.]. Moscow, Publ. MGU, 2011, 17 p.