ELIMINATION OF OIL POLLUTION IN THE PRESENCE OF SURFACTANTS PRODUCED BY ACINETOBACTER CALCOACETICUS IMV B-7241, RHODOCOCCUS ERYTHROPOLIS IMV Ac-5017 AND NOCARDIA VACCINII IMV B-7405

Main Article Content

Authors

T.P. Pirog

National University of Food Technologies, 68, Vladimirskaya str., Kiev, 0160, Ukraine

A.P. Sofilkanych

National University of Food Technologies, 68, Vladimirskaya str., Kiev, 0160, Ukraine

N.A. Grytsenko

National University of Food Technologies, 68, Vladimirskaya str., Kiev, 0160, Ukraine

Abstract

Oil is currently the main source of energy used worldwide, which in turn increases the probability of this xenobiotic compound entering the environment. The physical and mechanical methods commonly used to eliminate oil spills are not always effective. Biological methods to eliminate oil pollution, based on direct introduction of oxidizing microorganisms (bioaugmentation) or the use of various compounds that stimulate the natural (autochthonous) microbiota (biostimulation), including microbial surface-active substances (surfactants) show much promise. Due to environmental safety, the ability to emulsify hydrophobic compounds, and improve the efficiency of microbial degradation of xenobiotics, surfactants can be widely used in environmental technologies. The article describes the use of surface-active substances (surfactants) produced by Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii IMV B-7405 to intensify the removal of oil from water and soil. It was shown that the degree of oil degradation in water (2.6-6.0 g/L) and soil (21.4 g/kg) in 30 days was 80-94% after treatment with the liquid microbial culture containing surfactants. It is assumed that the activation of the natural oil-oxidizing microbiota, primarily contributes to the degradation of oil present in water, in the presence of surfactants produced by A. calcoaceticus ІMV B-7241, R. erythropolis ІMV Ac-5017, and N. vaccinii ІMV B-7405.

Keywords

intensification of oil degradation, microbial surfactants, Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, Nocardia vaccinii IMV B-7405

Article Details

References

ZAki M.S., Fawzi O.M., Abd EL-Zaher M.F. Bioremediation of contaminants. Life Sci. J., 2013, vol. 10, no. 1, pp. 3329-3332. http://dx. doi: 422_16108blife1001_3329_3332.

Tyagi M., da Fonseca M.M., Carvalho C.C. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 2011, vol. 22, no. 2. pp. 231-241. PMID: 20680666. DOI: 10.1007/s10532-010-9394-4.

Rogozina E.A., Andreeva O.A., Zharkova S.I., Martynova D.A. Sravnitelnaya kharakteristika otechestvennykh biopreparatov, predlagaemykh dlya ochistki pochv i gruntov ot zagryazneniya neftyu i nefteproduktami [Comparative characteristic of native biopreparations proposed for cleanup of siols and grounds from oil pollution]. Neftegazovaya geologiya. Teoriya i praktika. − Petroleum geology. Theory and practice, 2010, vol. 5, no. 3. Available at: URL.

Das N., Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int., 2011. PMID: 21350672. DOI:10.4061/2011/941810.

Ławniczak Ł., Marecik R., Chrzanowski Ł. Contributions of biosurfactants to natural or induced bioremediation. Appl. Microbiol. Biotechnol., 2013, vol. 97, no. 6, pp. 2327-2339. DOI:10.1007/s00253-013-4740-1.

Pacwa-Plociniczak M., Plaza G.A., Piotrowska-Seget Z., Cameotra S.S. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci., 2011, vol. 12, no. 1, pp. 633-654. PMID: 21340005. DOI: 10.3390/ijms12010633.

Ángeles M.T., Refugio R.V. In situ biosurfactant production and hydrocarbon removal by Pseudomonas putida CB-100 in bioaugmented and biostimulated oil-contaminated soil. Brazilian J. Microbiol., 2013, vol. 44, no. 2, pp. 595-605. PMID: 24294259. DOI: 10.1590/S1517-83822013000200040.

Pemmaraju S.C., Sharma D., Singh N., Panwar R., Cameotra S.S., Pruthi V. Production of microbial surfactants from oily sludge-contaminated soil by Bacillus subtilis DSVP 23. Appl. Biochem. Biotechnol., 2012, vol. 167, no. 5, pp. 1119-1131. PMID: 22391691. DOI: 10.1007/s12010-012-9613-z.

Chrzanowski L., Lawniczak L., Czaczyk K. Why do microorganisms produce rhamnolipids? World J. Microbiol. Biotechnol., 2012, vol. 28, no. 2, pp. 401-419. PMID: 22347773. DOI:10.1007/s11274-011-0854-8.

Ron E.Z., Rosenberg E. Biosurfactants and oil bioremediation. Cur. Opin. Biotechnol., 2002, vol. 13, no 3, pp. 249-252. PMID: 12180101.

Pirog T.P., Shevchuk T.A., Voloshina I.N., Gregirchak N.N. Use of claydite-immobilized oil-oxidizing microbial cells for purification of water from oil. Appl. Biochem. Microbiol., 2005, vol. 41, no. 1, pp. 51-55. DOI:10.1007/s10438-005-0010-z.

Karpenko E.V., Vil’danova-Martsishin R.I., Shcheglova N.S., Pirog T.P., Voloshina I.N. The prospects of using bacteria of the genus Rhodococcus and microbial surfactants for the degradation of oil pollutants. Appl. Biochem. Microbiol., 2006, vol. 42, no. 2, pp. 156-159. DOI:10.1134/S0003683806020074.

Pirog T.P., Antonuk S.I., Karpenko Y.V., Shevchuk TA. The influence of conditions of Acinetobacter calcoaceticus K-4 strain cultivation on surface-active substances synthesis. Appl. Biochem. Microbiol., 2009, vol 45, no. 3, pp. 272-278. DOI:10.1134/S0003683809030065.

Pirog T., Sofilkanych A., Konon A., Shevchuk T., Ivanov S. Intensification of surfactants' synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV В-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium. Food Bioprod. Process., 2013, vol. 91, no. 2, pp. 149-157. DOI:10.1016/j.fbp.2013.01.001.

Pirog T.P., Shevchuk T.A., Volishina I.N., Karpenko E.V. Production of surfactants by Rhodococcus erythropolis strain EK-1, grown on hydrophilic and hydrophobic substrates. Appl. Biochem. Microbiol., 2004, vol. 40, no. 5, pp. 470-475. DOI:10.1023/B:ABIM.0000040670.33787.5f.

Lakin G.F., Biometriya [Biometry]. Moscow, Vysshaya shkola, 1990, 352 p.

Singh A., van Hammer J.D., Ward O.P. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol. Adv., 2007, vol. 25, no. 1, pp. 99-121. PMID: 17156965.

Embar K., Forgacs C., Sivan A. The role of indigenous bacterial and fungal soil populations in the biodegradation of crude oil in a desert soil. Biodegradation, 2006, vol. 17, no. 4, pp. 369-377. PMID: 16570229.

Cubitto M.A., Morán A.C., Commendatore M., Chiarello M.N., Baldini M.D., Siñeriz F. Effects of Bacillus subtilis O9 biosurfactant on the bioremediation of crude oil-polluted soils. Biodegradation, 2004, vol. 15, no. 5, pp. 281-287. PMID: 15523911.

Kaczorek Е., Moszynska S., Olszanowski A. Modification of cell surface properties of Pseudomonas alcaligenes S22 during hydrocarbon biodegradation. Biodegradation, 2011, vol. 22, no 2, pp. 359-366. PMID: 20820883. DOI: 10.1007/s10532-010-9406-4.