APURINIC/APYRIMIDINIC ENDONUCLEASE REPAIR ACTIVITY OF MtbXthA REPAIR ENZYME IN MYCOBACTERIUM TUBERCULOSIS, THE CAUSATIVE AGENT OF TUBERCULOSIS

Main Article Content

Authors

S.K. Abeldenov

National Center for Biotechnology , 13/1, Valikhanov str., Astana, 010000, Kazakhstan

E.M. Ramankulov

National Center for Biotechnology , 13/1, Valikhanov str., Astana, 010000, Kazakhstan

M.K. Saparbaev

CNRS, UMR 8200, Gustave Roussy, F-94805 Villejuif Cedex, France

B.B. Khassenov

National Center for Biotechnology , 13/1, Valikhanov str., Astana, 010000, Kazakhstan

Abstract

Tuberculosis is one of the leading causes of mortality worldwide due to a bacterial infection, which is associated with the emergence of multi-drug resistant strains in recent years. DNA repair enzymes, particularly AP (apurinic/apyrimidinic (AP)) endonucleases play an important role in maintaining genomic stability of Mycobacterium tuberculosis, the causative agent of tuberculosis. AP endonucleases are key DNA repair enzymes that are involved in the removal of abasic sites. In case of DNA damage, specific DNA glycosylases remove the damaged bases and form the AP site. AP endonucleases form breaks in the phosphodiester bond at the AP site and cut the sugar-phosphate residue. In this work, activity of the AP endonuclease repair enzyme, MtbXthA was studied. Recombinant MtbXthA protein was cloned, expressed, and purified using standard methods of genetic engineering. It was established that the AP endonuclease activity of MtbXthA depends on the ions Mg2+ and Mn2+. Maximum AP endonuclease activity of MtbXthA was demonstrated at 37°C. It was noted that MtbXthA was very sensitive to ionic strength, since a 10-fold inhibition of the reaction was observed using 100 mM potassium chloride. Optimal pH for MtbXthA activity was slightly acidic (pH 6.0-6.5).

Keywords

DNA repair, tuberculosis, AP endonucleases, genetic engineering, genomic stability

Article Details

References

World Health Organization. Global Tuberculosis Report, 2014.

Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci., 2012, vol. 367, no. 1590, pp. 850-859. PMID: 22312052.

Comas I., Coscolla M., Luo T., Borrell S., Holt K. E., Kato-Maeda M., Parkhill J., Malla B., Berg S., Thwaites G., Yeboah-Manu D., Bothamley G., Mei J., Wei L., Bentley S., Harris S. R., Niemann S., Diel R., Aseffa A., Gao Q., Young D., Gagneux S. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet., 2013, vol. 45, no. 10, pp. 1176-1182. PMID: 23995134.

Hershberg R., Lipatov M., Small P.M., Sheffer H., Niemann S., Homolka S., Roach J.C., Kremer K., Petrov D.A., Feldman M.W., Gagneux S. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol., 2008, vol. 6, no. 12, pp. e311. PMID: 19090620.

Behr M.A. Evolution of Mycobacterium tuberculosis. Adv Exp Med Biol., 2013, vol. 783, pp. 81-91. PMID: 23468104.

Ehrt S., Schnappinger D. Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol, 2009, vol. 11, no. 8, pp. 1170-1178. PMID: 19438516.

Mizrahi V., Andersen S.J. DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mol Microbiol., 1998, vol. 29, no. 6, pp. 1331-1339. PMID: 9781872.

McGrath M., Gey van Pittius N.C., van Helden P.D., Warren R.M., Warner D.F. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2014, vol. 69, no. 2, pp. 292-302. PMID: 24072169.

Ford C.B., Shah R.R., Maeda M.K., Gagneux S., Murray M.B., Cohen T., Johnston J.C., Gardy J., Lipsitch M., Fortune S.M. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet., 2013, vol. 45, no. 7, pp. 784-790. PMID: 23749189.

Kurthkoti K., Varshney U. Base excision and nucleotide excision repair pathways in mycobacteria. Tuberculosis (Edinb)., 2011, vol. 91, no. 6, pp. 533-543. PMID: 21764637.

Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S.V., Eiglmeier K., Gas S., Barry C.E., 3rd, Tekaia F., Badcock K., Basham D., Brown D., Chillingworth T., Connor R., Davies R., Devlin K., Feltwell T., Gentles S., Hamlin N., Holroyd S., Hornsby T., Jagels K., Krogh A., McLean J., Moule S., Murphy L., Oliver K., Osborne J., Quail M.A., Rajandream M.A., Rogers J., Rutter S., Seeger K., Skelton J., Squares R., Squares S., Sulston J.E., Taylor K., Whitehead S., Barrell B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, vol. 393, no. 6685, pp. 537-544. PMID: 9634230.

Abeldenov S.K.B. Cloning, expression and purification of recombinant analog of Taq DNA polymerase. Biotechnology. Theory and Practice, 2014, no. 1, pp. 12-16.

Khassenov B.B., Sultankulov B.M., Kozhakhmetov S.S., Akhmetov S.B., Ramankulov E.M., Mukanov K.K. Получение рекомбинантного антигена вируса лейкоза крупного рогатого скота р24 [Producing a p24 recombinant antigen of bovine leucosis virus]. Biotehnologija. Teorija i praktika ‒ Biotechnology. Theory and Practice, 2011, no. 2, pp. 50-56.

Mussakhmetov A. Nurmagambetova A., Abeldenov S., Khassenov B. Purification of recombinant Pfu DNA polymerase by double step affinity chromatography. Biotechnology. Theory and Practice, 2014, no. 2, pp. 42-47.

Takeuchi M., Lillis R., Demple B., Takeshita M. Interactions of Escherichia coli endonuclease IV and exonuclease III with abasic sites in DNA. J Biol Chem., 1994, vol. 269, no. 34, pp. 21907-21914. PMID: 7520446.

Warner D.F., Tonjum T., Mizrahi V. DNA metabolism in mycobacterial pathogenesis. Curr Top Microbiol Immunol., 2013, vol. 374, pp. 27-51. PMID: 23633106.

Sassetti C.M., Rubin E.J. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A., 2003, vol. 100, no. 22, pp. 12989-12994. PMID: 14569030.